

iMIS e-Series

iiBBOO PPrrooggrraammmmeerr GGuuiiddee
VVeerrssiioonn 1100..66

Advanced Solutions International, Inc.

Updated on 4/28/2006.
© 2006 by Advanced Solutions International, Inc. All rights reserved.
Updates may be made to this documentation and incorporated into later editions.

§ Sales and Marketing
Headquarters

901 N. Pitt St., Ste. 200
Alexandria, VA 22314
800.727.8682

§ Center for Technical
Excellence

11500 Metric Blvd., Ste. 150
Austin, TX 78758
512.491.0550

Notice
This document and the products it describes are confidential information that is furnished under the terms of a license agreement as
Software and associated documentation. They may be used and copied only in accordance with the terms of the license agreement. No part
may be copied, transmitted, or reproduced in any form without written permission from Advanced Solutions International, Inc. (ASI).
ASI and the program authors have no liability to the purchaser or any other entity, except as provided in the license agreement permitting
your use of this software, with respect to any liability, loss, or damage caused, directly or indirectly, by this software or reliance on this
documentation, including but not limited to any interruptions in service, loss of business, anticipatory profits, or consequential damages.
Should this document be marked Draft or describe our plans or products not released for general sale to new customers, by reading it you
agree not to use this information for any purpose except to educate you and your organization about the current development intentions of
ASI; you agree not to rely upon this information, even for planning purposes, since it can be changed at any time without any notice to you;
and you agree not copy, publish, or disseminate the information in this document outside your organization without our written consent.
Trademarks
iMIS is a registered trademark of Advanced Solutions International, Inc. Express!, iMIS e-Series, iMIS LAN, CyberiMIS, iMIS.com, iMIS for
Sybase ASA, iMIS for Microsoft SQL, and iMIS for MSDE are trademarks, servicemarks, and designmarks of Advanced Solutions
International, Inc. Also, iMIS e-X (where X is the name of the module, such as e-Events or e-Orders) is a trademark, servicemark, and
designmark of Advanced Solutions International, Inc. All companies and products mentioned herein are trademarks or registered trademarks
of their respective owners.

Microsoft .NET Connected Logo
The .NET Connected Logo indicates an application or service whose primary functionality is exposed through, or is programmatically
enhanced by the consumption of, Web services that comply with industry Web service standards. These applications must also be built on
the .NET Framework, a component of the Windows operating system that enables the use of Web services and next generation Windows
applications. This certification recognizes solutions that fully support Web service capabilities, and takes advantage of the .NET Framework
programming model benefits such as multi-language support, added security, and enhanced flexibility - benefits that customers will also
realize. Microsoft and the .NET Logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other
countries.
Designed for Windows XP
Microsoft created the "Designed for Windows XP" logo used on the iMIS product to indicate that the product will be stable when running
Windows XP, the related software or driver components can be installed or removed easily, and the basic experience with the product and
the operating system will be the same or better after upgrading to future versions of Windows. ASI is proud that extensive testing has proved
that its products meet all the criteria needed to be able to display this logo. Microsoft, Windows, and the Windows logo are trademarks, or
registered trademarks of Microsoft Corporation in the United States and/or other countries.

Contents
iBO Programmer Guide 5

Before you begin.. 5
iBO purpose and scope..5

General Availability ..5
Getting support and certification6

Contacting ASI Developer Support6
Training and certification6

Documentation conventions6
Concepts ... 6

Understanding Business Objects..............................6
What are Business Objects?6
What is inside a Business Object?........................8
Who should use iBO? ..10

iBO's role in iMIS ...10
iBO components and classes10

Functionality overview..10
Invoking server objects.......................................11
Naming conventions ..11
Interface for Activity ...12
Interface for Contacts...12
Interface for DataServer13
Interface for Errors...13
Interface for e-Series..13
Interface for Events..13
Interface for Financials.......................................13
Interface for FundRaising14
Interface for Orders..14
Interface for Products...14
Interface for Subscriptions..................................15
Interface for SystemConfig.................................15
Interface for UserSecurity...................................15

Development Guide ... 16
Installing iBO ...16

Requirements ..16
Installing iBO on the Client16
Configuring iMIS System Setup..........................18

API documentation ..19
Accessing API Help ...19
iBO filters...20
Finding Help topics ..23
Printing topics..24

Development environments and deliverables..........24
ColdFusion versus ASP scripting........................24
Prototyping in Visual Basic.................................25
Avoid creating ActiveX controls25
Unsupported formats: Xtenders, VB.NET............25

Managing the state of web sessions.......................25
Error handling guide ..26

Processing Errors ..26
Using a General Error Handling Procedure26
To handle errors in Visual Basic26
To handle errors in ColdFusion...........................28
iBO Error messages...29

Integration Guide.. 34
e-Series Integration ... 34

IBOGuest ContactID.. 34
ColdFusion sessions.. 35
Basket tables... 36

Viewing the iBO Change Log in Customer Portfolio 36
Usage Tips by Module.. 36

General Issues.. 36
Batch attributes ... 36
International dates... 37

iboCustomerManagement...................................... 37
Checksum for Automatically Assigned IDs.......... 37
Synchronizing Phone Numbers and Email

Addresses .. 37
iboEvents.. 37

VAT and Canadian Taxation 37
iboOrders.. 38

Shipping Costs and Shipping Zones................... 38
Quantity Shipped... 38
Multiple Entities for Products.............................. 38

Code Samples.. 39
Sample scenarios and code................................... 39

Code sample: Contacts - Find and update data .. 39
Code sample: Contacts - Delete and insert data . 39
Code sample: Contacts - Update user-defined data

 40
Code sample: Events - Display and register function

data.. 41
Code sample: Paging .. 42

Sample application.. 44
Code sample: index.asp 44
Code sample: RegistrationReview.asp 50

Glossary of Terms 55

Index 57

iBO Programmer Guide.. 5

»

Before you begin

iBO purpose and scope
iMIS Business Objects (iBO) includes the core components Contacts, Events,
FundRaising, Orders, Subscriptions, and UserSecurity. These COM-based
components enable third-party developers to indirectly access the iMIS
database via class interfaces that closely parallel the functional interfaces of the
traditional iMIS. These components can be used to build custom web pages that
are integrated with the e-Series web site.

iBO provides developers with API visibility to the Contacts, Events,
FundRaising, Orders, Subscriptions, and UserSecurity components.

§ The Contacts component provides COM interfaces that enable viewing and
modifying contact data, such as the contact's profile, addresses, financials,
and user-defined demographic data.

§ The Events component provides COM interfaces that enable creation and
modification of event registrations and reading of event setup data,
including functions and pricing structure.

§ The FundRaising component provides COM interfaces suitable for
accepting simple donations.

§ The Orders component provides COM interfaces for creating new standard
orders, adding products to the order, calculating prices, freight, handling,
and taxes, and reading existing orders from the database.

§ The Subscriptions component provides COM interfaces for creating and
billing the subscriptions associated with a member type, paying for
subscriptions, and querying subscriptions.

§ The UserSecurity component provides COM interfaces to validate
passwords and to determine the ContactID of the logged-on staff person or
member.

The iBO library will be expanded and released in phases. New components will
follow, while the functionality of existing components will continue to broaden.
Initially, the components will match the functionality contained in e-Series.

General Availability

iBO is generally available to all who meet these requirements:

§ Authorized iMIS Service Providers (AiSP)

§ Qualified to implement e-Series

§ Have clients who are licensed for e-Customer Management

§ Have attended an iBO Implementation training class

iBO Programmer Guide

6.. iBO Programmer Guide

Getting support and certification

Contacting ASI Developer Support

ASI offers a variety of support options. These include free services on our
website, where you can search our extensive information base and connect with
other users of iBO.

Support for iBO is provided on a for-fee basis. Submit issues to ASI Support,
and Consulting will work with Support to research the answers you need.

Training and certification

You must become certified in iBO technology to receive your license to
implement applications using it. These are the steps to licensing:

1 Complete the first prerequisite: e-Series Implementation class.

2 Complete the second prerequisite: e-Series Advanced class.

3 Complete the required iBO training: 2-day technical authorization class.

4 Pass the iBO certification exam.

5 Request an iBO license.

Documentation conventions
The ASI printed documentation for iBO uses the typefaces and symbols
described below to indicate special text:

San-serif Indicates sample code and proper names of iBO identifiers, such as classes,
interfaces, methods, and variables.

Italics Indicates code comments, as well as new terms and book titles.
Keycaps Indicates a keyboard key. For example, “Press Esc to exit a menu.”
[] In text or syntax listings, encloses the optional or variable items. Do not type

the brackets.
< > In text or syntax listings, indicates a variable string; type in a string appropriate

for your code. Do not type the angle brackets.
Angle brackets are also used for HTML tags.

… In syntax listing, indicates code that is missing from the example.

Concepts

Understanding Business Objects
iMIS Business Objects (iBO) are a set of COM components that enable third-
party developers to create scalable custom applications that leverage the iMIS
backend database. iBO components ensure the integrity of the business rules
inherent with the existing iMIS system.

What are Business Objects?

Mirroring the real world
In the broadest sense, business objects represent your business
programmatically. Since organizations run on physical objects and concepts, it
simplifies things greatly to model their actual players and processes within self-
contained software units that directly correspond to real-world entities and
activities.

iBO Programmer Guide.. 7

A business object not only contains but also manages its own data. For example,
a Customer object must include all of the data and routines needed to represent
a customer throughout all interactions, so that you can use it unchanged across
all the applications for your business. This means that you use the same
Customer business object in code for taking an order, sending out a bulk
mailing, and analyzing sales patterns; no subsequent coding you write can
disturb your initial order-processing code: the behaviors are independent and
controlled.

Interfaces: The freedom to evolve
Over time, each business object must evolve, gaining properties and methods to
support new functionality. However, we try to keep our interface backward
compatible so that previous properties and methods (interface) will remain
unchanged and your existing applications will work as written without being
changed to accommodate the new features.

This freedom from the disruption of future changes allows you to generate rich
feature sets at a faster pace by using an iterative, building-block approach - that
is, your application is free to evolve as well. Moreover, using business objects
containing robust iMIS business logic lets you build your own suites of
functionality without risking the integrity of the underlying iMIS database.

Schema encapsulation
But iBO offers more than interface stability and data validation: because of
schema encapsulation, you can focus on the specific value of the features you
create without having to master the underlying iMIS database structure or take
on responsibility for the database consistency and integrity resulting from your
use of iBO.

Without such encapsulation, a developer of any functionality lying on top of a
back-end database must thoroughly understand the database organizational
structure (schema). Removing this burden is one of the key benefits to third-
party developers.

Inherently, schema encapsulation assures greater iMIS database stability
because it isolates the effects of executing business rules to just those tables that
are directly affected. The resulting clean and modular implementation provides
enormous cost savings through reduced complexity and greater scalability.

The general model: Access through layers
The Business Object approach is a generalized model for business objects,
intended to encompass many interpretations and implementations. The
diagram below illustrates how the iMIS business objects form a protective
middle layer of a 3-tier architecture, serving as intermediaries between the
encapsulated database and the client applications. Other business object
systems may implement a superset or a subset of this model.

8.. iBO Programmer Guide

iBO Components as layer between applications and the RDBMS

As shown, the tools underlying the system (such as database systems and
technology components) reside, shielded, at the core. Only business objects
interface directly with this layer of tools. The business objects are hidden from
end-users, who reach them only through visual presentations and desktop
programs. These two inner layers, the business objects and inner data core,
comprise the foundations for the iMIS Business Framework Architecture.

What is inside a Business Object?

Business objects are representations derived directly from the abstract concepts
of the object-oriented analysis and design model. A business object consists of
data (state information) and behavior (properties and methods) that you access
together externally through an interface. The specific objects manipulated by
application programs are instances of class definitions, where the class serves as
the template from which an object is created. For example, a Car class could
have an object instance of a BMW, which contains properties describing that
particular car (i.e., model, year, acceleration rate) along with the behaviors
possible to manipulate it (start, accelerate, brake).

iBO Programmer Guide.. 9

Representation of what business objects contain

Business Object data
The data within an instantiated object is stored within variables that are unique
to that specific instance. The values contained within instance variables are
particular to each object, even objects of the same class. That way, we can have a
Customer class, where its instantiated objects have different information for
different customers (i.e., Acme vs. Ford).

These data variables exist as either Public or Private. Public variables are visible
to your calling application, which means that you can manipulate their values
directly. Private variables are invisible to you, existing only for use by code
contained within the object itself. Variables are usually made Private to allow
for the enforcing of business or validation rules; rather than set a variable
directly, you call a method to do so.

iBO follows this practice of constraining variables to be Private, which carries a
major benefit: object internals and variables can change significantly between
product releases with little to no impact on applications that use the objects,
because the methods retain their original, abstracted interfaces.

Business Object properties
The properties of a business object provide the most powerful means by which a
business object designer can choose what information attributes of the object
are available to a client program. Properties do not necessarily have a one-to-
one relationship with an object's data. For example, the Car object diagrammed
above may not make its displacement, torque, and weight data variables
accessible, yet it does allow clients to avail themselves of the acceleration rate
property, as computed from the directly inaccessible data variables.

Properties can be read-only, write-only, or both read and write. They can be set
up to grant direct client modification of an object value, or they may have
additional validation checks or business rules applied subsequent to submission
of the value to be modified.

Business Object methods
Simple access to the property attributes of an object is not enough to model full
behavioral interactions of the object with the calling client or other objects.
Methods provide the mechanisms for an object to offer much more robust
services or functionality. As routines within an object, interrogative methods
use their own data or passed-in parameters to return values or other
information back to the calling client. Imperative methods merely perform a
service as directed by a client, and they may or may not return a status of the
function performed.

10 .. iBO Programmer Guide

Who should use iBO?

iBO is intended for programmers working in these situations:

§ Association offices

§ Authorized iMIS Solution Providers (AiSPs)

§ Association management firms

§ Organizations needing CRM capabilities

In each case, the programmer uses the Contacts component to create a
Windows or browser-based interface to an iMIS installation.

Note: You must learn how to program with COM-based components before
attempting an iBO implementation.

iBO's role in iMIS
iMIS Business Objects are functional components that provide an application
programming interface (API) to data within the iMIS database. You can
incorporate these components in programs written in a variety of languages,
such as Macromedia ColdFusion and Microsoft Active Server Pages.

Through the business object's API, incorporating programs gain access to iMIS
logic. For example, you can use the Contact business object to return member
records from the iMIS database. By using the iMIS business object, all iMIS
validation and business logic, such as flow-down rules, is securely enforced.

iBO components and classes
Be aware that not all iBO classes and interfaces that are visible to you through
object browsers (and IntelliSense) are for public use. Some exist for internal use
only.

There are also certain classes and methods which are Use At Your Own Risk.
These API items have been built to support other API items; they are lower-level
methods. These methods have been implicitly tested by ASI's Quality Assurance
Department when they tested the released API methods. However, these
methods have not been fully tested by ASI's Quality Assurance Department. You
can use these methods with the assurance of binary compatibility for future
releases. There is no Technical Support available for these methods.

The way to ensure that you are using iBO correctly is to refer to the online API
Reference (p. 19), which is an HTML Help (.CHM) file. If a specific method or
property is for ASI use only, the reference would make that clear; if an entire
class is for internal use, it would not appear in this reference at all.

Functionality overview

iMIS Business Objects offer a versatile tool for extending the functionality of e-
Series to meet specific client requirements. For example, you could implement a
tailored workflow as part of the client's event registration process; following the
tailored workflow, you can add the resulting registration to the e-Series
shopping basket or save it to the iMIS database, depending on your client's
needs.

The Contact component lets you select an individual contact within the iMIS
database, provide access to the contact's data, and load all associated address,
notes, and activity records. The component lets you create a list of Contact
records meeting criteria that you specify. You can also create and delete
individual Contact records through the interface.

iBO Programmer Guide... 11

The Event component lets you select one or more events, select a particular
function, or list the functions within an event. Through the Event component,
you can access event and function properties, including pricing information.
The component lets you select a specific event registration or a list of
registrations, and it lets you create a registration, including payment and badge
information.

Invoking server objects

At least two iBO Platform objects must be instantiated before you can
instantiate a functional BO object:

1 iboUserSecurity.CUser specifies the database to be accessed, and the
CUser instance is passed to BOAdmin objects to establish iBO connectivity.
The critical properties in this object are:

DBID - (required) must be an ODBC DSN, formatted as
ODBC:DSN_Name.

UserID - used by CContact for change logging. You can call
CUser.Validate to verify a userID and password. This should be the
user logon.

Password - should be from the logon.

2 BOAdmin is the core platform object, which exists specifically for each
component:

iboContactManagement.CContactsBOAdmin

iboEvents.CEventsBOAdmin

That is, before you can do anything with the Contacts component, you must
instantiate the CContactsBOAdmin.

The only properties that these BOAdmin objects have are the ErrorsCount and
Errors object. However, the BOAdmin has several methods. You will use these
methods to add new data and find existing data.

Naming conventions

While browsing through the API reference, you will see that certain object
names are plural. Throughout iBO, a plural name always signifies a collection of
objects (for example, Errors is a collection of Error objects).

Plurals are also used for the names of BOAdmin methods. For example,
NewRegistration() creates a new Registration, whereas
NewRegistrations() creates an empty collection of Registration objects.
You must use the collection object to access the methods for populating the
collection.

Note: Each collection object has a property that is its filter: CBatches has
BatchFilter, CContacts has ContactFilter, and so on. Thus, you can
deduce the filter name from that of the collection.

Most collection objects have a similar method call for populating and retrieving
objects from them:

§ GetContactById (singular) retrieves one Contact record from the database,
based upon the ID parameter. This method does not populate the collection;
rather, it returns the single object (if it exists in the database).

§ GetContacts (plural) retrieves multiple Contacts. You can pass a
p_lngMaxRecords parameter to restrict the amount of data returned from
the filter, up to a maximum of 500 (that is, if you specify 10 and the filter
finds 50, only 10 would be returned). The default returns all of the data
specified by the filter.

12 .. iBO Programmer Guide

§ GetContactsPaged (plural) is identical to GetContacts in that it uses the
filter to populate the collection, but this method will restrict the size of the
collection. It also returns a reference so that this method can be called a
second time and retrieve the next set of data. This paging works much like a
web search engine, which displays only a subset of the results per page but
provides links to get the next subset, and to the next. Keep requesting pages
and testing the number returned; when the number is 0, there is no more
data.

§ GetContact (singular) retrieves one object from the collection, which must
be populated first.

There is no parameter to pass an SQL WHERE clause to the GetContacts
method. This would not only iBO restrict to certain flavors of SQL, but would
also make it dependant upon table definitions and their relationships.
Therefore, the collection is built upon the filter, which allows iBO to evolve and
improve. Because of the abstraction of the filter, not only can table column
names change without any recoding of the scripts that use iBO, but the column
could be moved into another table, allowing for more normalization and
optimization of the database schema.

Interface for Activity

These are the public classes in the Activity component. These classes should be
used to read the database and should not be used to write to the database, as
there is no validation on write operations. These classes are intended to be used
by other IBO components.

Class Used to…
CActivities Retrieve one or more CActivity instances for viewing
CActivity View one Activity record
CActivityBOAdmin Used to instantiate CActivities, CActivity

Interface for Contacts

These are the public classes in the Contacts component:

Class Used to…
CAddress View or edit a contact's address entries
CContact View or edit one Contact record
CContacts Retrieve one or more Contact records for viewing or editing
CContactsBOAdmin Used to instantiate CContacts, CContact, and CContMgmtConfig
CContMgmtConfig Used to access system configuration values
CExtView, CExtField Access the ExtView (Extended View) objects, which are the

equivalent of iMIS Customizer Windows data
Notes:
§ ExtView names reference windows (not tables),

while ExtField names reference columns.

§ ExtField names are case-sensitive, even if the
database instance is not.

CFinancialProfile View or edit a contact's Name_Fin data
CNote View or edit a contact's note entries

iBO Programmer Guide...13

Interface for DataServer

These are the public classes in the DataServer component:

Class Used to…
CFilter Used to set the equivalent of an SQL WHERE or ORDER BY clause

for retrieval from the database by a collection class

Interface for Errors

These are the public classes for the Errors component:

Class Used to…
CError iBO creates a CError instance when an error condition occurs
Cerrors Collection of errors

Interface for e-Series

These are the public classes in the e-Series component:

Class Used to…
CESeriesBOAdmin Used to instantiate CESeriesIntegration and to Restore sessions

state after a page turn
CESeriesIntegration Used for ESeriesIntegration for subscriptions and standard orders, to

convert an anonymous user to a member, and to serialize session
state into an XML string

Interface for Events

These are the public classes in the Events component:

Class Used to…
CBadge View or set badge information
CEvent View an event definition, including the function details
CEvents Retrieve and access a filtered set of Event objects
CEventsBOAdmin Retrieve an instance of an Events, Registrations, or Registration

object
CEventsConfig View system setup information for Events
CFunction View a function definition, including fees details
CFunctionFee View a fee definition
CRegistration Create a new registration or view an existing registration
CRegistrations Retrieve and access a filtered set of Registration objects
CRegLineItem View or add a registered function (line item) for an event

Interface for Financials

These are the public classes in the Financials component:

Class Used to…
CBatch Used to view Batch records
Cbatches Used to retrieve Batch records from the database

14 .. iBO Programmer Guide

CFinancialEntities Used to read Ord_Control rows into CFinancialEntity instances
CFinancialEntity Used to view Org_Control data
CFinancialsBOAdmin Used to instantiate CFinancialEntities, CFinancialsConfig, and

CBatch
CFinancialsConfig Used to view System_Params data

Interface for FundRaising

These are the public classes in the FundRaising component:

Class Used to…
CFRDataMgr Use to instantiate CGift
CGift Use to make a simple donation

Interface for Orders

These are the public classes in the Orders component.

Class Used to…
CKitItemOrderLine View order line information that is part of a kit product
COrder View or set order information pertaining to Event registration orders,

including the Order Lines
COrderLine View or set order line information pertaining to Event registration

orders
COrders Retrieve and access a filtered set of Order objects
COrdersBOAdmin Retrieve an instance of an Orders, Order, Standard Orders, Standard

Order, Kit Item Order Line, or Standard Order Line
COrdersConfig View system setup information for Orders
CStdOrder View or set Standard Order information, including the Standard Order

Lines
CStdOrderLine View or set Standard Order Line information, including Kit Item Order

Lines
CStdOrders Retrieve and access a filtered set of Standard Order objects

Interface for Products

These are the public classes in the Products component:

Class Used to…
CBaseProduct Provide a base location for properties common to many types of

product objects
CDuesProduct View Dues/Subscription product information
CDuesProducts Retrieve and access a filtered list of Dues/Subscription products
CKit Retrieve a set of Standard Products designated as a kit (sold as a

single Standard Product)
CKitItem View Standard Product information for a product that is a member of

a kit
CProductBOAdmin Retrieve an instance of a DuesProducts, Product Categories, or

Standard Products object
CProductCategories Retrieve a filtered list of Product Categories

iBO Programmer Guide...15

CProductCategory View Product Category information
CPublicationInfo View Publication information for Standard Products marked as

publications
CStdProduct View Standard Product information, including Kit and Publication

information
CStdProducts Retrieve a filtered list of Standard Products

Interface for Subscriptions

These are the public classes in the Subscriptions component:

Class Used to…
CSubscription View or edit Subscription information
CSubscriptions Retrieve a filtered list of Subscription objects. When used in

conjunction with the Contact object, this class may also be used to
create, bill, and pay new Subscription objects.

CSubscriptionsBOAdmin Retrieve an instance of the Subscriptions or Subscription object
CSubscriptionsConfig View system setup information for Subscriptions

Interface for SystemConfig

These are the public classes in the SystemConfig component:

Class Used to…
CCashAccount Used to view data on CashAccounts records
CCountry Used to view data on Country_Name records
CMemberType Used to view data on Member_Type records
CSubscriptionDef Used to view data on the dues subscription products for a member

type
CSysCfgBOAdmin Used to instantiate CSystemConfig
CSystemConfig Used to view System_Params and Gen_Tables, and to retrieve

CCashAccount, CCountry, CMemberType, CSystemParams, and
CTaxAuthorities

CSystemParams Used to view data on System_Params records
CTaxAuthorities Collection of related CTaxAuthority instances
CTaxAuthority Used to view data on Products records with PROD_TYPE = 'TAX'

Interface for UserSecurity

These are the public classes in the UserSecurity component:

Class Used to…
CUser Contains data on the user who is logged on

16 .. iBO Programmer Guide

Development Guide

Installing iBO

Requirements

Supported Environments
This release supports the following environments:

§ iMIS database version 10.5 or greater

§ Microsoft ActiveX® Data Objects (ADO) transactions

§ Microsoft SQL Server (not Sybase), versions 2000 and 7.0

§ Microsoft Windows 2000 SP2, Windows XP

§ Microsoft Internet Information Services (IIS) 5.x and COM+

Supported Languages
The iMIS Business Objects work with many languages, but they are validated for
use and supported only with these:

§ Macromedia ColdFusion

§ Microsoft Visual Basic Script (VBScript)

§ JavaScript (from Netscape and Sun Microsystems)

§ Microsoft JScript

§ Microsoft Visual Basic

§ Microsoft Active Server Pages (ASP)

Firewall Configuration
OLEDB uses port 1433 for TCP/IP. SQL Server listens on port 1433 for default
instances of SQL Server. Named instances of SQL Server 2000 dynamically
assign a port number.

Use the Server Network Utility to configure a specific port for SQL 2000 to
listen on, and then set the firewall to allow that port.

Microsoft's knowledge base article 287932
(http://support.microsoft.com/default.aspx?scid=kb;en-us;q287932) describes
SQL Server and firewall configuration.

Remote Database Access
To access your database remotely (over the Internet) with iBO, use a Virtual
Private Network. Ensure that the DSName referencing the SQL Server uses the
server's name and not its IP address.

Installing iBO on the Client

1 Contact ASI to obtain a license key for iBO.

2 Upgrade the iMIS license keys for iBO.

3 Upgrade your database to the latest version of iMIS.

4 Remove prior versions of iBO before running the iMIS installer: Start |
Control Panels, Add or Remove Programs.

5 Insert the iMIS Server CD and run Setup.exe.

6 Select Install Products.

http://support.microsoft.com/default.aspx?scid=kb;en-us;q287932)

iBO Programmer Guide...17

7 Select Server.
8 Select Install iBO.

9 Select Next when the InstallShield Wizard window displays.

10 Select Next to install to the default directory or Browse to select another.

Note: Do not rename this directory or any subdirectories after installation,
or future upgrades will not run properly.

11 Select Next .

12 After iBO is installed, select Finish .

13 In iMIS, update the SQL logins: Select File> System Setup, select User
Passwords , and select Update All SQL Logins .

Note: If you do not update SQL logins before running a custom iBO
application, you may receive error 3261 or an error indicating that the
database cannot be accessed; run the update to correct this.

iBO Installed Files
These files are included an iBO installation (directory paths are relative to the
main iBO installation directory):

Path Filename Purpose
<root> readme.txt Release info; finding documentation

iboAccounting.dll Component handling Accounting
bioactivity.dll Component handling Activities
iboBOInterfaces.dll Component handling BOInterfaces
iboContactManagement.dll Component handling Contacts
iboDataServer.dll Component handling database access
iboErrors.dll Component handling errors
iboESeries.dll Component handling e-Series
iboEvents.dll Component handling Events/Registrations
iboFinancials.dll Component handling Financials
iboFundRaising.dll Component handling Fund Raising
iboOrders.dll Component handling Orders
iboProducts.dll Component handling Products
iboSubscriptions.dll Component handling Subscriptions
iboSystemConfig.dll Component handling system configuration
iboTranslate.dll Component handling translation
iboUserSecurity.dll Component handling user security

\bin

iboXMLUtilities.dll Component handling XML utilities
\EventsDemo Sample implementation, in ASP
\FundRaisingDemo Sample implementations, in ASP, VB, and

ColdFusion
\OrdersDemo Sample implementation in ColdFusion

\Samples

\VBTestClient Sample Visual Basic test client
\Source iboEnums_ColdFusion.cfm ColdFusion code defining constants used to

specify filters when retrieving data

18 .. iBO Programmer Guide

Path Filename Purpose
iboEnums_Javascript.asp JavaScript code defining constants used to

specify filters when retrieving data
iboEnums_VBScript.asp VBScript code defining constants used to

specify filters when retrieving data

Configuring iMIS System Setup

As a rule, system options that are set in the iMIS environment for iBO are also
enforced by the iBO system.

This table lists the setup options, with explanations of how iBO is affected.

Setup Area Option Relationship to iBO Processing
ID Assignment Auto Assign Member

Numbers
If enabled, iBO uses the same counter to
generate new ID values for iBO Contacts and
returns an error if an ID is passed into the new
contact

Institute Type,
Major Key Prompt

Available as CContMgmtConfig interface
properties; Institute Type is the 'InstitutePrompt'
property

Preferred Sort Order Not applicable
Must be Unique Applicable when a CContact record is entered or

modified via iBO
Flow from ID If enabled, when ID is set, MajorKey is

automatically set to the same value

Standard Fields

Prefixes in Full Name Any prefixes in this list are used in constructing
the FullName field value upon saving.

AR/Cash Multiple Entities If enabled, multiple entities are supported,
including multiple entities at the product level

Chapter Prompt Available as a CContMgmtConfig interface
property

Chapters

Group[x] prompts Not applicable
Home Phone Flow from/to
Phone Number at Address

Specifies the mapping for Home Phone

Work Phone Flow from/to
Phone Number at Address

Specifies the mapping for Work Phone

Fax Number Flow from/to
Fax Number at Address

Specifies the mapping for Fax

Customers

E-mail Flow from/to E-mail at
Address

Specifies the mapping for E-mail

Use Bill Categories Visible via the CContMgmtConfig interface as a
property of the CContact object, regardless of this
setting.

Use Functional Title Visible via the CContMgmtConfig interface as a
property of the CContact object, regardless of this
setting.

Force Source Coding Visible via the CContMgmtConfig interface; no
impact otherwise.

Options

Use Birth Date Visible via the CContMgmtConfig interface as a
property of the CContact object, regardless of this
setting.

iBO Programmer Guide.. 19

Setup Area Option Relationship to iBO Processing
Prompt for Status Date Not applicable

The value is available via the CContMgmtConfig
interface.

Allow Delete from Palette Not applicable
Require Gender Setting to True causes validation to fail if the

CContact.Gender property is not set.
Main, 2nd, and 3rd address
prompts

Available via the CContMgmtConfig interface.

Use Company Not applicable
Use Title Not applicable

Address Usage

Use to Update Chapter Not applicable
International
Prompts

 These prompts will be available via the
CContMgmtConfig interface.

Zip Options Not applicable
Address Codes These settings will be available via the

CContMgmtConfig interface.
Note Prompts These prompts will be available via the

CContMgmtConfig interface.
Accumail
Options

 Not applicable

Indexes These fields are added to the Search Types on
the Member Find window. If a CContact is
inserted/updated, the appropriate index table
must be updated to enable this lookup. iBO
updates these as needed.

Change
Logging

 Not applicable
iBO automatically logs changes to any CContact
property as if they were listed in the Change
Logging fields list.

Disable Auto Flow down of
company address
information

Toggles whether address information flows down
automatically upon CContact edit

Advanced

Use Parent Company Pricing Does not affect the Contacts component, but
affects the pricing of registrations in iBO Events

Access Keys No access keys are used by iBO in this release.
Events Warning For Max Registrants If set to True, causes a warning to be returned if a

registration is created for an Event that is full.

API documentation

Accessing API Help

For API reference documentation, use the HTML Help file, iBO_API.chm.

Finding the latest documentation
The latest version is always available on the ASI website, in the HelpNet
community. The HelpNet is restricted to licensed users, so you need to sign up
to receive a password; go to the Customer Home page to do so: ASI's Customer
Home page (http://www.advsol.com/template.cfm?section=Customers)

Current documentation and resources reside in the Document Archives of the
HelpNet Community (Release Materials and iBO folders) on ASI's website:

http://www.advsol.com/template.cfm?section=Customers)

20.. iBO Programmer Guide

Release news, installation notes,
resolved issues

iMIS Release Notes and related
documentation, PDF

Concepts, usage, references,
samples

iBO Programmer Guide, PDF

Complete API Reference iBO_API.chm, compiled HTML Help

Current Known Issues
(as tracked in our database)

Log in to the Support Web page, select
Search, specify Area: Known Issues

iBO filters

The CFilter object lets you specify the rows to be returned or modified. The
CFilter Translate method returns conditions that you can place in a WHERE
clause. It generates join conditions automatically, so you do not need to include
them in the CFilter.

Types of filters

There are two types of filters: atomic and compound.

§ Atomic filters specify a single condition, such as
ZCContacts_CContact.County, "TRAVIS", efilEqual

§ Compound filters have two or more atomic filters joined by a Boolean
operator (AND , OR, etc.).

How filters work

Outside of a component, CFilters are defined in terms of properties in the
encapsulating component's interface, rather than in terms of columns in a table.
This approach helps to preserve schema encapsulation.

A component can select rows within its encapsulated tables using joins on tables
that it does not encapsulate.

For a compound CFilter, AND is the assumed Operator if none is specified. If
you call the AddFilter method on a CFilter that already has its properties set,
the following happens:

§ The CFilter is converted to a compound AND CFilter.

§ The existing filter is added to the new compound filter.

§ A new CFilter instance is created using the passed values.

§ The new instance is added to the compound filter.

Filter example

The following example shows how a filter is created:

WHERE (Name.LAST_NAME = 'Smith') AND ((Name.COUNTY = 'TRAVIS') OR
(Name.COUNTY = 'WILLIAMSON'))
The best way to model the Where clause is using a hierarchical tree, with the
Operator representing a compound filter and the SQL condition representing
the atomic filter:

iBO Programmer Guide...21

Visualizing the structure of a filter

You would write the following calls to create this filter:

Set filFilter = New CFilter

' make the filter a compound AND filter
filFilter.Operator = efilAnd

' create an atomic filter in the compound AND filter
Call filFilter.AddFilter (ZCContacts_CContact.LastName, "Smith”,
efilEqual)

' create a compound OR filter within the compound AND filter
Set filCounty = filFilter.AppendFilter(efilOr)

' create the two atomic filters within the compound OR filter
Call filCounty.AddFilter(ZCContacts_CContact.County, "TRAVIS",
efilEqual)
Call filCounty.AddFilter(ZCContacts_CContact.County, "WILLIAMSON",
efilEqual)

When to add joins

The DataServer uses inner joins when columns from more than one table are
involved in a DataRequest. When the tables involved in a DataRequest are all
encapsulated by the same component, the join is IntraComponent; when the
tables are encapsulated by two or more components, the join is
InterComponent.

The DataServer handles IntraComponent joins without help. It can create inner
joins between all of the tables encapsulated by a component. For such joins,
there is no special processing required: Use CFilter.AddJoin to specify which
rows to select.

However, the DataServer does need help with InterComponent joins, which
involve multiple components. You use the CFilter.AddJoin method to tell the
DataServer which properties in each component to use to build the inner join.
The DataServer associates one or more inner join clauses with each combination
of two properties. The following InterComponent joins are supported:

§ iboContactManagement.CContact.ContactID =
iboOrders.COrder.ShipToID

§ iboContactManagement.CContact.ContactID =
iboEvents.CRegistration.RegistrantID

§ iboOrders.COrderLine.ProductCode =
iboEvents.CFunction.FunctionCode

§ iboOrders.COrder.OrderNum = iboEvents.CRegistration.OrderNum

22.. iBO Programmer Guide

These InterComponent joins let you relate iboContactManagement, iboEvents,
and iboOrders. The DataServer requires the help of the CFilter.AddJoin
because there are several possible ways to relate iboOrders to iboEvents.

Example: Adding a join

Sub addJoinTest()
 Dim mystring As String
 Dim i As Long
' Example: AddJoin filters -- finds all contacts registered for an
event.

' All events with EventCode <> 0
m_objContacts.ContactFilter.AddFilter
ZiboEvents_CRegistration.EventCode, _
”0", efilNotEqual
 If handleError(m_objContacts) Then Exit Sub

 ' All contacts with a contactId > 0
m_objContacts.ContactFilter.AddFilter
ZiboContactManagement_CContact.contactID, _
"0", efilGT
 If handleError(m_objContacts) Then Exit Sub

' Join the Contacts object and the Registrations object on the ContactID
key
m_objContacts.ContactFilter.AddJoin _
ZiboContactManagement_CContact.contactID, _
ZiboEvents_CRegistration.registrantID
 If handleError(m_objContacts) Then Exit Sub

 ' Get all matching contacts
 m_objContacts.GetContacts True, 0
 If handleError(m_objContacts) Then Exit Sub
 For i = 1 To m_objContacts.count
 Set m_objContact = m_objContacts.GetContact(i)
 If handleError(m_objContacts) Then Exit Sub
mystring = mystring & m_objContact.contactID & ";"
 Next i

 MsgBox "count=" & m_objContacts.count & vbCrLf & mystring
End Sub

Enumerator constants for filters

The \Source folder contains several different scripting language files that
define the constants you will use to specify filters when retrieving data:

§ iboEnums_ColdFusion.cfm (ColdFusion code)

§ iboEnums_Javascript.asp (Javascript code)

§ iboEnums_VBScript.asp (VBScript code)

These scripting language files are located in the Source folder in the iBO
installation folder. The e-Series installation process automatically copies the
ColdFusion scripting language files to the correct folder (the Customer/Source
folder used by e-Series) for use with e-Series. The scripting language files should
be copied to the Web Application folder for ColdFusion applications that do not
rely on e-Series and for non-ColdFusion applications.

You should include the following line of code in every iBO page or in the
Application.cfm file for the application:

<CFInclude \ template="../Source/iboEnums_ColdFusion.cfm">

iBO Programmer Guide.. 23

The following table lists some of the iBO enumerator constants for component
filters. For a listing of all iBO enumerator constants, you can refer to the
iboEnums_ColdFusion.cfm, iboEnums_Javascript.asp, or
iboEnums_VBScript.asp files, look up the table, and then find the column under
the table.

Const efilEqual
Const efilNotEqual
Const efilGT
Const efilLT
Const efilContains

Use with iboDataServer.CFilter.Comparison

Const efilBeginsWith
Const efilAnd
Const efilOr

Use with iboDataServer.CFilter.Operator

Const efilAtomic

Finding Help topics

The HTML Help offers three main ways to locate information:

1 Using the Contents tab, browse the hierarchical structure of the help topics,
clicking book icons to expand and collapse subtopics. This is most helpful
when you want to explore the information from the top down.

2 Using the Index tab, enter a keyword, select Display, and browse the topic
titles that matched the keyword you specified. This is a fast way to find the
primary topics for a known item, such as a particular method.

Tip: Having opened your topic, you can select the Locate button on the
toolbar to open the Contents to your topic's hierarchical location.

3 Using the Search tab, enter a search string, select List Topics, and browse the
results that are returned. By clicking the table headings (Title, Location,
Rank), you can sort the results to help you identify likely candidates. If you
get too many results, you can do a subsearch by enabling the Search previous
results checkbox or restrict searching to Search titles only:

When you find a topic of interest, double-select it or select Display.

24.. iBO Programmer Guide

Printing topics

To print the complete documentation on a given component or object, select its
folder (book icon) in the Contents pane and select Print on either the toolbar or
the context menu:

Specify that you want to print the heading and its subtopics:

Development environments and deliverables

ColdFusion versus ASP scripting

ColdFusion supports the use of COM objects, including iBO. Because
ColdFusion is the webserver technology underlying e-Series, it simplifies your
environment to use ColdFusion for your custom e-Series pages.

ASP (Active Server Pages) is Microsoft's webserver scripting language. When
considering ASP, be aware that you might find it harder to integrate custom e-
Series pages with ASP than with ColdFusion.

Note: To implement ASP code, you must make minor changes to your e-Series
source code. Contact ASI Consulting if you are interested in attempting an ASP
implementation.

These are examples of how you will simplify your tasks by choosing to script in
ColdFusion:

§ You can keep the top, side, and bottom indexes synchronized with the rest
of e-Series with no additional effort if the scripting language you use is
ColdFusion.

iBO Programmer Guide.. 25

§ If you are going to save meeting registrations to the e-Series checkout
basket, you must run a ColdFusion script to retrieve certain ColdFusion
client-processing variables that are required by the e-Series checkout
basket.

Note: With any scripting technology, you can edit the files with Notepad or any
editor that can save plain text files.

Prototyping in Visual Basic

The fundamental problem with developing applications using current webserver
technology is the lack of a robust debugger. Visual Basic version 6 has good
debugger, and it has an object browser that presents all of COM components in
a summary form.

There are many practical benefits to prototyping your applications in Visual
Basic and using its debugger:

§ You can easily identify all of each iBO object's methods and properties,
including their current values.

§ You can change an object's properties.

§ You can drill down to child object methods and views.

§ You can re-execute code after errors are encountered.

These features can greatly reduce your coding time, so much so that it may take
you less time to create a prototype VB application that mirrors the web process
exactly (in terms of iBO use) than it would take you to then port it over to the
webserver technology.

Avoid creating ActiveX controls

It is technically possible to create ActiveX controls using iBO. Nevertheless, ASI
does not recommend the use of ActiveX controls for widespread use on a
website, due to security issues and other complications. However, you may find
ActiveX controls beneficial for use in an intranet environment.

Unsupported formats: Xtenders, VB.NET

ASI will not support Xtender applications that use iBO.

ASI has not tested iBO with VB.NET and therefore cannot support custom iBO
e-Series solutions that use it.

Managing the state of web sessions
By convention, iBO provides two methods on all business objects: GetXML()
and LoadXML(). You can use these methods in your client web application for
session state management, if desired.

§ GetXML() returns an XML string, which comprises a snapshot of the object
at a point in time (including any modifications of properties, etc., that have
occurred).

If the client application stores this string along with a session ID, it may be
retrieved on a subsequent page, a blank object instantiated (by calling
New*() - NewContact() for instance, with the initialize parameter set to
False), and a call made to LoadXML(), passing in the XML string.

To avoid getting unpredictable results when calling LoadXML(), do not
modify the string returned from GetXML().

§ LoadXML() populates the object to the state it was in when the call was
made to GetXML() on the previous page.

26.. iBO Programmer Guide

Error handling guide
Each class interface has two error properties:

§ ErrorsCount

§ Errors

You can call ErrorsCount at any time to check for error conditions. Errors
returns an instance of the iboErrors object.

Processing Errors

Dim errErrors as CErrors
Dim errError as CError
Dim i as long

Step 1: Get the primary (last) error message:
Call objBO.Method
If not objBO.ErrorsCount = 0 then
 Set errErrors = objBO.Errors
 Msgbox "Error description " & errErrors.GetErrorMessage
 objBO.ClearErrors
End if
After dealing with an error, clear the CErrors instance.

Step 2: Iterate through all error messages:
Call objBO.Method
If not objBO.ErrorsCount = 0 then
 Set errErrors = objBO.Errors
 For i = 1 to errErrors.Count
 Set errError = errErrors.GetError(i)
 Msgbox "Error number " & errError.Number & ", " &
_errError.Message & ", " & errError.Category & ", " & errError.Location
 Next i
 objBO.ClearErrors
End if
After dealing with an error, clear the CErrors instance.

objBO will return without processing whenever objBO.ErrorsCount is not
zero.

Using a General Error Handling Procedure

The amount of code you would write to handle errors could exceed that of your
iBO-related code itself if you do not use a general procedure to handle the
errors. We use “general” to suggest reusability.

There are many ways of exposing a general procedure to handle iBO errors.
Several ways are listed above. Which method is appropriate for you depends on
the nature of your project.

To handle errors in Visual Basic

We recommend using VB to prototype applications, and you will find it most
efficient to put the generic error handling routine in a VB module (.BAS). You
can include the single .BAS file in all iBO-related projects, which drastically cuts
down the time required to setup the iBO inline error/status checking. Following
is an example of such a module:

Option Explicit
Public Function handleError(ByVal p_object As Object) As Boolean
Dim errErrors As iboErrors.CErrors
Dim errError As iboErrors.CError
Dim i As Long

iBO Programmer Guide.. 27

handleError = True
On Error GoTo ErrorHandler

If p_object Is Nothing Then
printDebugMsg "Could not instantiate iBO object."
Else
If p_object.ErrorsCount > 0 Then
Set errErrors = p_object.Errors
For i = 1 To errErrors.Count
Set errError = errErrors.GetError(i)
printDebugMsg "Error : " and errError.Number _
and "; " and errError.Message _
and "; Location: " and errError.Location
Next i
errErrors.ClearErrors
Else
handleError = False
End If
End If
Exit Function

ErrorHandler:
printDebugMsg "exception in iBO Error Handler"
End Function
Private Sub printDebugMsg(p_string As String)
Debug.Print p_string
MsgBox p_string, vbCritical, "iBO Error"
End Sub
This function does several things:

§ Assumes failure

§ Checks to make sure iBO was even instantiated

§ Reports every error, not just the first one

§ Clears the iBO object's Errors object

§ Reports runtime errors encountered trying to report the errors

§ Reports success only after verified error free

Further, this function can be modified in one place. If a change in the way errors
are to be formatted to the user changes, then the code does not have to be
pasted all over the rest of the project. Also note that besides displaying the error
in a MsgBox, it will also print the error to the VB debugger's 'Immediate'
window, so there is an audit trail of the errors generated.

This is how simple the code can become after implementing this .BAS file with
this global procedure:

On Error GoTo fatal_err:
'This call will create a registration with auto-enroll on
Set reg = cbo.NewRegistration(CUser, _
"ANNUAL", "101", True, True, True, True)
If handleError(cbo) Then
 Exit Sub
End If
'If only auto-enroll and then goto checkout basket are required,
SubmitChanges() save it to basket
reg.SubmitChanges
If handleError(reg) Then
 Exit Sub
End If
Exit Sub
fatal_err:
MsgBox Err.Description

28.. iBO Programmer Guide

Notice that the entire iBO object is passed to the error-handling routine. This
alleviates having a thorough knowledge of the error handling by all
programmers involved in the iBO projects. The benefit of this is to allow for less
technical analysts to prototype the e-Series customization, and let the technical
web programmer craft the finished solution.

To handle errors in ColdFusion

You can create a global error handling routine in ColdFusion using the
<CFINCLUDE> tag. However, the error handling when scripting on a webserver
cannot be as simple as the VB prototype. In the VB prototype, you simply report
the error and stop; in the webserver script, the web page must be completed
regardless. Leaving an error message on a half-drawn web page is not
comforting to the end user. If the processing is being done in an included script,
that script could be aborted, but still the error must be propagated up to the
script that is drawing the page.

Despite the additional work required, you have much to gain from using a
generalized procedure, such as follows:

<CFSET errMessage="">
<CFIF PARAMETEREXISTS(errErrors) EQ "NO">
<CFSET errMessage="Could not instantiate iBO object.">
<CFELSE>
<CFIF errErrors.Count GT 0 >
<CFSET errMessage="">
<CFLOOP INDEX="i" FROM ="1" To = "errErrors.Count">
<CFSET errError = errErrors.GetError(i)>
<CFSET errMessage="iBO Error errError.Number;
errError.Message;
Location: errError.Location
">
</CFLOOP>
<CFSET blnResult = errErrors.ClearErrors()>
</CFIF>
</CFIF>
<CFIF errMessage GT "">
<CFPARAM NAME="CLIENT.ID" DEFAULT="">
<CFFILE ACTION="Append"
FILE="C:\e440\iBOErrors.txt"
OUTPUT="Now() IP=CGI.REMOTE_ADDR iMIS ID=CLIENT.ID
errMessage"
ADDNEWLINE="YES">
</CFIF>
Besides looping through all of the errors, putting them in one string, and
clearing the Errors object, this procedure reports the error to a text file so that
the webmaster can review what iBO errors have been generated through live
usage. The following are included:

§ The IP address, to help identify anonymous users

§ The iMIS ID (if the user logged into e-Series)

§ The date/timestamp of the occurrence

§ The actual error

The following example shows how to properly invoke this global error
procedure in the ColdFusion script:

<!---This call will create a registration with auto-enroll on--->
<CFSET reg = cbo.NewRegistration(CUser,"ANNUAL",
"CLIENT.ID",True,True,True,True)>
<CFSET errErrors = cbo.Errors>
<CFINCLUDE TEMPLATE="iBOHandleErrors.cfm">
<CFIF errMessage GT "">
<P><CFOUTPUT>
errMessage
</CFOUTPUT></P>

iBO Programmer Guide..29

<CFELSE>
<!---If auto-enroll and then goto checkout basket --->
<CFSET blnResult = reg.SubmitChanges()>
<CFSET errErrors = reg.Errors>
<CFINCLUDE TEMPLATE="iBOHandleErrors.cfm">
<CFIF errMessage GT "">
<P><CFOUTPUT>
errMessage
</CFOUTPUT></P>
</CFIF>
</CFIF>
The ColdFusion global procedure requires more coding than in VB. The error
object cannot be passed as a parameter, but must be 'set' before the global script
is 'included'. Though the global script could output the error, it would then
output the error for every script. This may or may not be appropriate for every
web page. For instance, if the processing was done before the <HTML> tag was
issued, the error will be wiped out when the real web page starts. If the error
occurred when the processing was to draw a number in a narrowly defined table
column, the output could be a few characters per line over dozens of lines,
which would look strange.

Note: In this example, every iBO method call causes the IF statements to nest
another level deeper. Although indenting for this will cause your script to scroll
far to the right, it is the best way of resolving the end of each IF statement.

You must take special care when using the <CFINCLUDE> tag, because paths
presented in the TEMPLATE are relative to the script that calls the include.
/ScriptContent is the easiest place to put iBOHandleErrors.cfm because, if
your calling script is also in that folder, you can avoid specifying the path. If
your calling script is in the /Source/Meetings/ folder, then the relative path
you would use is "../../ScriptContent/". This relative path is also kept in
the ColdFusion variable CLIENT.CLIENTPATH.

iBO Error messages

Enum EIBOErrNumber
' Maximum resource ID is 65,000
' General Error Numbers
eGenUnknownError
1000
Unknown error. %1
eGenItemNotFound
1001
Item not found. %1
eGenSAXParsingError
1002
Error in XML. %1
eGenDateFormatError
1003
Date is invalid. Please format as MM/DD/YYYY or MM/DD/YYYY hh:mm:ss. %1
eGenInvalidParameterError
1004
Invalid parameter. %1
eGenUnsupportedFunctionality
1005
Function is not supported. %1
eGenGeneralError
1006
General error. %1
eGenItemExists
1007
Item exists. %1
eGenItemDoesNotExist
1008
Item does not exist. %1

30.. iBO Programmer Guide

eGenErrorExists
1009
Error exists from previous call; request not processed.

' iboContactManagement error numbers start at 1300
(1000 + (300 * Component Enum)
eContInvalidAddress
1300
Invalid Address entry. %1
eContInvalidContact
1301
Invalid Contact entry. %1

' iboEvents error numbers start at 1600
eEvtsMaxRegistrantsExceeded
1600
Warning: The maximum number of registrants for the event has been
exceeded.
eEvtsDuplicateRegistration
1601
That contact is already registered for the selected event.
eEvtsInvalidFunctionCode
1602
[%1] is not a valid function code for the event.
eEvtsNoPricingForRegClass
1603
No pricing is defined for function: %1, for the selected registrant
class.
eEvtsBatchNumberRequired
1604
Batch control is turned on. A batch number is required for the
registration.
eEvtsNoLineItems
1605
There are no line items for this registration.

' iboActivity error numbers start at 1900

' iboOrders error numbers start at 2200

' iboUserSecurity error numbers start at 2500
eUsrInvalidUser
2500
Invalid User entry. %1
eUsrCantHashPassword
2501
Error hashing password.

' iboFinancials error numbers start at 2800
eFinInvalidCCNumber
2800
Invalid credit card number %1.
eFinInvalidCardName
2801
Credit card holder name is required.
eFinExpiredCard
2802
Credit card has expired.
eFinInvalidCardType
2803
Invalid credit card type %1.

 ' iboErrors error numbers start at 3100
eErrErrorNumberInvalid
3100
Error number %1 is invalid. Calling method is %2.
eErrDescriptionValue
3101
Value of description parameter is

iBO Programmer Guide...31

eErrUnavailable
3102
Unavailable

' iboDataServer will use numbers assigned to iboErrors
' These messages are also used by the methods in the CTranslate Class in
each BO
eDsvReadNoTransaction
3200
Connection Type is "Read" and Commit Type is not "NoTransaction". This
combination is invalid
eDsvWriteNoTransaction
3201
Connection Type is "Write" and Commit Type is "NoTransaction". This
combination is invalid
eDsvConnectionAlreadyOpen
3202
Can't open a connection which is already open."
eDsvConnectionAlreadyClosed
3203
Can't close a connection which is already closed."
eDsvInvalidProperty
3204
Property %2 in interface %1 is invalid.
eDsvInvalidTranslatedColumn
3205
Translated column %1 is invalid for component %2 interface %3 property
%4
eDsvInvalidTable
3206
Table %1 is invalid. Component is %2.
eDsvInvalidRealColumn
3207
Real column %1 is invalid. Virtual column name is %2 in table %3.
eDsvInvalidColumn
3208
Column %1 in Table %2 is invalid.
eDsvInvalidComponent
3209
Component %1 is invalid.
eDsvCantGetTranslateInterface
3210
Column or property %1 is invalid. Parsed to component %2 table/interface
%3 column/property index %4
eDsvInvalidColumnProperty
3211
Property/Column %1 is invalid."
eDsvInvalidFilter
3212
Filter is invalid.
eDsvErrGeneratingSQLStatement
3213
Error generating SQL statement.
eDsvInvalidFilterOperator
3214
Filter operator is invalid; must be EfilOperator.efilAnd or efilOr.
eDsvInvalidInterComponentJoinIndex
3215
Join index %1 on Property %2 and %3 in invalid.
eDsvErrorCombiningJoinArrays
3216
Error occurred while combining JoinArrays.
eDsvFilterNotInitialized
3217
Filter has not been initialized.
eDsvAllColumnsInvalidInFilter
3218
ZAllColumns is not valid for use in a Filter.

32.. iBO Programmer Guide

eDsvInvalidFilterComparison
3219
Filter comparison is invalid.
eDsvInvalidInterface
3220
Interface %1 in Component %2 is invalid.
eDsvPropertyNotInComponent
3221
Property %1 is not in Component %2.
eDsvPropertyIndexNotInInterface
3222
Property Index %1 in interface %2 is not in component %3.
eDsvJoinInvalidInComponent
3223
Join of Table %1 to Table %2 in Component %3 is invalid.
eDsvInvalidIntraComponentJoinIndex
3224
IntraComponent Join Index %1 is invalid in Component %2.
eDsvInvalidInterComponentPropertyJoinIndex
3225
InterComponent Property Join Index %1 is invalid in Component %2.
eDsvTranslatedColumnFilterInvalid
3226
Can't translate Column Filter translated from a Property Filter.
eDsvErrorTranslatingVirtualColumn
3227
Error occurred while translating Virtual Column %1 for Real Column %2.
eDsvErrorAddingTableToCollection
3228
Error adding Table %1 to collection.
eDsvErrorTranslatingColumn
3229
Error occurred while translating Column %1.
eDsvInvalidColumnPropertyType
3230
ColumnProperty Type of Column %1 is invalid.
eDsvErrorOpeningConnection
3231
Error opening connection.
eDsvErrorInitializingRecordset
3232
Error initializing recordset.
eDsvErrorClosingConnection
3233
Error closing connection.
eDsvErrorUpdatingTableList
3234
Error updating table list for inter component joins.
eDsvErrorCreatingJoinArray
3235
Error creating intra component join array.
eDsvErrorJoinRequiredForMultipleTables
3236
Error generating FROM SQL clause. Fields have been requested from
multiple tables but joins have not been specified. CFilter.AddJoin must
be called for inter component joins.
eDsvErrorSQLUpdateColumnsNotSet
3237
Error generating SQL Update statement. The SetValue method must be
called for the TimeStamp column and at least one other column.
eDsvSetValueEnumNotColumn
3238
SetValues was called with an enum value of %1 which does not represent a
column.
eDsvZAllColumnsNotValid
3239
SetValues/SortList was passed ZAllColumns as an Enum. This is not valid.

iBO Programmer Guide.. 33

eDsvVirtualColumnsInvalid
3240
Column %1 is virtual; virtual columns are not allowed in a SQL
Update/Insert statement.
eDsvSetValuesColumnsFromMultipleTables
3241
SetValues can not be passed columns from more than one table.
eDsvInvalidBoolean
3242
Column %1 is Boolean. Value must be "TRUE" or "FALSE"
eDsvFilterRequired
3243
SQL Update/Delete statement requires a Filter which identifies the row
to modify.
eDsvMultipleTablesNotAllowed
3244
SQL Update/Insert statement can't reference more than one table.
eDsvTimeStampRequired
3245
TimeStamp column must be set for Update and Delete SQL statements.
eDsvErrorSQLInsertColumnsNotSet
3246
Error generating SQL Insert statement. The SetValue method must be
called for at least one column.
eDsvTimeStampNotAllowed
3247
The TimeStamp column can't be specified in a SetValue call for a SQL
Insert statement.
eDsvInvalidConnectionTypeForModify
3248
The connection type must be "Write" when updating the database.
eDsvInsertError
3249
Row was not inserted.
eDsvInvalidParmList
3250
Parameter list must contain pairs of Column Enum and
Ascending/Descending Enum.
eDsvADONoCurrentRow
3251
GetValues called when there are no values. ExecSelect may not have
returned any rows, EOF may have been reached via a Move call.
eDsvColumnNotInSelectList
3252
Column %1 requested by GetValues does not appear in Select List; use
SetSelectList to specify the column before calling ExecSelect.
eDsvInvalidJoinArray
3253
Invalid join array; unable to generate SQL FROM clause.
eDsvJoinInvalid
3254
Join of Table %1 to Table %2 is invalid.
eDsvInvalidDataSource
3255
Invalid DataSource %1. DataSource name must start with literal "ODBC:"
eDsvErrorTableNotInJoin
3256
Error generating FROM SQL clause. Table %1 does not participate in a
join. CFilter.AddJoin must be called for inter component joins.
eDsvInvalidMaxRecords
3257
Maximum number of records must be greater than 0.
eDsvNoTablesSpecified
3258
There are no tables specified in the SQL statement. Use
CFilter.AddFilter, SetSelectList, SetValues or SetOrderList to specify a
table.

34.. iBO Programmer Guide

eDsvAsiGopherFailure
3259
Unable to access database using ASIGOPHER login for DSN %1.
eDsvLoginPasswordNotSet
3260
The System_Params value for IBO_Control.Access has not been set in
database %1
eDsvAccessSystemParamInvalid
3261
The System_Params value for IBO_Control.Access is invalid in database
%1.
eDsvUnableToAccessDatabase
3262
Database %1 can't be accessed by IBO.
eDsvLicenseStringNotSet
3263
The System_Params value for System_Control.LicensedProducts has not been
set in database %1
eDsvNotLicensed
3264
Database %1 is not licensed for the requested operation.
eDsvWriteConnectionRequired
3265
%1 requires a ConnectionType of eWrite.
eDsvStoredProcedureMissing
3266
The stored procedure %1 is missing from database %2.
eDsvRecordsetNotOpen
3267
Recordset must be open before calling %1.
eDsvConnectionNotInitialized
3268
InitConnection must be called to initialize a connection before any
other methods are called.
eDsvSqlStatementError
3269
Error generating SQL statement %1
eDsvNoColumnsInSelect
3270
One or more columns must be specified using SetSelectList before calling
ExecSelect.
eDsvInvalidSQLDataType
3271
This property can't be used with the efilGT or efilLT operators. This
property translates to a SQL text, ntext, or image data type.
eDsvCantInitIboCrypto
3272
Unable to initialize cryptography component for DSName %1

Integration Guide

e-Series Integration

IBOGuest ContactID

All operations prior to CContact.SubmitChanges can be performed as IBOGuest.
e-Series can be used to put products in the basket, and you can use iBO to add
items to CStdOrder, add address and security information, set the member type,
and create and bill subscriptions. GetXML and Restore can be called repeatedly
as needed to transfer OrderLines to e-Series and back to iBO.

SubmitChanges cannot be called on IBOGuest, and you cannot call
SaveToESeriesBasket before calling SubmitChanges since every row in the
Basket_Dues table must have a corresponding row in the Subscriptions table.

iBO Programmer Guide.. 35

CUser.UserID does not have to be set to "IBOGuest" for an anonymous user. If
CUser.UserID is set to "IBOGuest," ConvertGuest changes CUser.ContactID
from "IBOGuest" to the new ContactID. This also applies to
CStdOrder.BillToID.

CUser.UserID does not log in a user. If CUser.UserID and CUser.Password are
set, the user ID and password can be verified. CUser.UserID is only set by iBO
when ConvertGuest is called to change "IBOGuest" to the new ContactID.

If ConvertGuest is called on any ContactID other than "IBOGuest," an error
message is generated.

If a custom iBO page returns to e-Series checkout without calling the e-Series
login page, e-Series requests that the user register and sets the user up as a Web
Member. CESeriesIntegration.ConvertGuest must be called, followed by
CContact.SubmitChanges, then the e-Series login page. The e-Series login page
verifies that the user is valid by using the Name_Security row that was inserted
by SubmitChanges. An "IBOGuest" CContact cannot be used for
SubmitChanges.

A CContact with an ID of IBOGuest cannot be created. If
GetContactByID("IBOGuest") is used, you cannot call SubmitChanges on it. You
can perform any other operations, but you will not be able to change the
database. Because it has different initialization values, it may behave slightly
differently than a "normal" new CContact.

Two "IBOGuest" instances cannot interact. Multiple "IIBOGuest" instances have
the same ContactID, but are different in memory.

ColdFusion sessions

A ColdFusion session is identified by CFID and CFToken. A new ColdFusion
session is assigned a CFID and CFToken when the session is established. The
CFID and CFToken are valid until the session times out due to user inactivity.
iBO uses CFID and CFToken to identify the Basket table rows associated with
the CESeriesIntegration instance.

If invalid CFID and CFToken values are passed to iBO, iBO does not know that
these values are invalid. iBO uses these values to read the Basket tables and will
not find any rows, which implies that no products have been ordered and no
payments have been made for subscriptions.

ESeriesIntegration.GetStdOrder gets the CStdOrder associated with the session
specified by CFID and CFToken. iBO then creates a new standard order and
adds order lines for each row in the Basket_Order table. This behavior does not
correspond to CStdOrders.New or GetStdOrder.

A reference to CContact should not be obtained before calling
CESeriesIntegration. If a CContact and its subscriptions are obtained, the
SaveToESeriesBasket method is not available since a CContact cannot be passed
to CESeriesIntegration. Therefore, you cannot set the CSubscription.Amount
paid and process it with e-Series checkout. You can modify the subscriptions
and then call SubmitChanges to update the Subscriptions table so that e-Series
can then process these subscriptions in the same manner it uses to process
existing subscriptions for existing members. In this scenario, the ConvertGuest
method is not available to convert CContact from an anonymous user to a
member.

36.. iBO Programmer Guide

If you call GetXML, save the contents in a ColdFusion session variable, build an
HTML string and return it to CF/IIS, and then exit your ColdFusion/custom
iBO page, the HTML string displays in the user's browser. If the user clicks a
link in the page, an HTTP Request string is sent to IIS. This string is transferred
to ColdFusion because of the page name extension. ColdFusion parses the
HTTP Request string and extracts CFID and CFToken. The CFID and CFToken
values are used to restore the ColdFusion environment. If control is passed to a
custom iBO page, CFID, CFToken, and XMLstring must be available to the
custom iBO page, most likely as session variables.

CESerieBOAdmin.Restore(XMLString, CUser) returns a reference to
CESeriesIntegration such that CESeriesIntegration will be set up as it was when
GetXML was called. Any changes made to CUser, CContact, and CSubscription,
and any products imported via the Basket tables or added via
NewStdOrderLine, are present, as if control was passed from the instruction
before GetXML to the instruction after Restore with no intervening activity.

To empty the basket tables from iBO, delete all of the CStdOrderLine instances
associated with the CStdOrder and then call SaveToESeriesBasket.

If the user's ColdFusion session times out, the ColdFusion session variables are
lost, including probably the XMLString. The user cannot continue their session
because CFID and CFToken are no longer valid. Everything that the user has
done that has not been committed to the database is lost. The next time the user
logs in to the site, the basket table entries for the user will be deleted.

Basket tables

iBO assumes that the Basket tables will not be modified between the GetXML
and Restore calls. Restore differs from LoadXML in the following ways:

§ Restore is called on CESeriesBOAdmin

§ Restore modifies the CUser instance, including DBID

§ Restore returns a CESeriesIntegration instance

CESeriesBOAdmin.NewESeries uses the CFID and CFToken parameters that
Restore obtains from the XML string. The XML string includes
CESeriesIntegration data, CUser data, CContact, CAddress, CNote, CExtView,
CSubscriptions, CSubscription, CStdOrder, and CStdOrderLine. The XML string
does not include the Basket tables.

Viewing the iBO Change Log in Customer Portfolio
To view the iBO change log in Customer Portfolio, you must expand the data
grid's row height or highlight the log text to see all of the logged fields created by
iBO.

Usage Tips by Module

General Issues

Batch attributes

In iMIS, you can modify only the following batch attributes:

§ batchnum

§ data

§ description

§ control count

iBO Programmer Guide.. 37

§ control amount

§ actual count

§ cash table

iBO allows you to modify all batch attributes except for the DateCreated
property.

International dates

If you are using international dates with iBO, you must configure the database
and Web server to use the appropriate international locale. The locale on both
the database and web server must be the same. Date information that is passed
from the presentation layer to the iBO API must be in the same international
locale format as the database and webserver. The iBO API returns date
information to the presentation layer in this same international locale format.

iboCustomerManagement

Checksum for Automatically Assigned IDs

Checksum digits can be added to IDs that are automatically generated by iMIS.
IDs generated with this option have a more unique value than IDs that are just
sequentially assigned numbers. This only applies to IDs that are automatically
generated for Name records; it does not apply to other IDs that are
automatically generated.

Note: The checksum is not a random number. The checksum is derived from the
ID using a specific set of algorithms.

To add checksums to automatically generated IDs, enable the Use Checksum for
IDs option on the Customer Setup - Basic Options window (from Customers, select
Set up module> General, and select Basic Options).

Synchronizing Phone Numbers and Email Addresses

iBO provides the same synchronization capabilities for Home Phone, Work
Phone, Fax and E-mail as iMIS Customer Management.

The Work Phone, Home Phone, Fax, and E-mail fields (Name table) on the Profile tab
on the Manage customers window can be mapped to the Phone, Fax, and E-mail
fields (Name_Address table) on any address purpose defined in the Main, 2nd, or
3rd fields on the Customer Setup - Address and Notes window.

By mapping these fields, the data defined in these fields automatically populates
the corresponding fields on the Profile tab or the address purpose tab
(Name_Address data to Name data and vice versa). Synchronization allows data
to match and eliminates the need to enter data twice.

See the Customer Management guide for more information on synchronizing
phone numbers and e-mail addresses.

iboEvents

VAT and Canadian Taxation

iboEvents supports VAT and Canadian taxation.

§ For VAT, if a meeting function is taxable and has a tax code assigned, all
members will be charged VAT unless Name_Fin.USE_VAT_TAXATION is
True.

38.. iBO Programmer Guide

§ For Canadian taxation, if a tax authority is assigned at the meeting level and
the meeting function is PST and/or GST taxable, all members will be
charged tax unless Name_Fin.TAX_EXEMPT is not blank.

iboOrders
Registrations use iboOrders, which does not have any license key requirements.
Other BOs and the ASI Presentation Layer code cannot call iboStdOrders if the
"ORDER" key is not present.

If the ShipToID is changed while working with a CStdOrder, the new Ship-To
contact is loaded from the database and verified. The address information for
the CStdOrder is also refreshed to match the preferred mail address information
of the new Ship-To contact.

Shipping Costs and Shipping Zones

Shipping costs will not be calculated correctly if an order is placed from a
country for which shipping rates and zones have not been set up in iMIS.

Shipping zones are defined according to postal code. Depending on your
organization's needs, you can define single postal codes as shipping zones or
divide groups of postal codes into shipping zones.

Shipping zones use the first three characters of a postal code, and the table
format for defining zones is XXX,Z where XXX represents the first three
characters of a postal code, and Z represents the zone designation defined by
the user. You also can enter a postal code in the format XXX-XXX,Z where XXX
represents the first three characters of the beginning postal code, XXX
represents the first three characters of the ending postal code, and Z represents
the zone designation. These zone designations are used when setting up weight
tables on the Set up freight by weight window.

For example, if you define a shipping zone for a single postal code, such as
75208, you would enter 752 followed by a comma. You then would enter either
a numeric or alphabetic value for the zone designation, such as a 1. The
shipping zone would display as 752,1. A shipping zone defined for a group of
postal codes could be entered as 900-999,2.

As long as you follow the correct table format, you can define as many zone
codes as necessary. You must define shipping zone tables before defining freight
tables. Zone tables are defined on the Set up zones window.

Quantity Shipped

The QtyShipped attribute in the iBO Order object is not set by iBO since nothing
has yet shipped. The QtyShipped attribute is set by iMIS Orders when the order
is shipped.

Multiple Entities for Products

iBO supports multiple entities at the product level. If multiple entities is
enabled, the ORG_CODE is derived from the first non-blank product in the
order. If there is no entity associated with the first non-blank product, the
default order entity is used. If there is no order entity, the system default entity
is used. If multiple entities is not enabled, the system default entity is used.

See the Order Processing guide for more information on multiple entities at the
product level.

iBO Programmer Guide..39

Code Samples

Sample scenarios and code
These sample code segments are for illustration only; be aware that they omit
necessary conventions, such as releasing object instances and declaring and
initializing variables.

Code sample: Contacts - Find and update data

The code below demonstrates the following scenario:

Find Contacts with ContactType = 'CM' and County = 'TRAVIS,' display them,
and update the one with the ContactYears >= five, changing the Category to 'A'.

dim cboContactsAdmin as iboContactManagement.CContactsBOAdmin
dim contsContacts as iboContactManagement.Contacts
dim usrUser as iboUserSecurity.CUser
dim errErrors as iboErrors.Errors

usrUser.DBID = “ODBC:iMIS_dsn”

Set cboContactsAdmin = new CContacts.CContactsBOAdmin

Set contsContacts = cboContactsAdmin.GetContacts(usrUser)

contsContactsFilter = contsContacts.Filter

contsContactsFilter.Operator = efilAnd
contsContactsFilter.AddFilter(eContactType, "CM", efilEqual)
contsContactsFilter.AddFilter(eCounty, "TRAVIS", efilEqual)

contsContacts.GetContacts()

For x = 1 to contsContacts.Count
contContact = contsContacts.GetContact(x)
 strContactFirstName = contContact.FirstName
 etc.....
 (display Contact data row...)
 If contContact.ContactYears > 5 Then
 contContact.Category = 'A'
 contContact.Validate()
 If contContact.ErrorCount > 0
 Set errErrors = contContact.Errors
 strError = errErrors.GetErrorMessage()
 ' (process or display strError...)
 Else
 contContact.SubmitChanges(errErrors1,1)
 End If
 If contContact.ErrorCount > 0
 Set errErrors = contContact.Errors
 strError = errErrors.GetErrorMessage()
 ' (process or display strError...)
 End If
 End If
Next x

Code sample: Contacts - Delete and insert data

The code below demonstrates the following scenario:

Retrieve Contact 'Scott Smith' who has ContactYears > 3, delete the address
with purpose = “Temporary,” add an address with purpose = “VacationHome,”
and display the addresses.

40.. iBO Programmer Guide

Note: For brevity, this code omits checking Errors.

contsContacts = cboContactsAdmin. NewContacts(usrUser)

contsContactsFilter = contsContacts.Filter
contsContactsFilter.Clear()

contsContactsFilter.Operator = efilAnd
contsContactsFilter.AddFilter(eLastName, "Smith", efilEqual)
contsContactsFilter.AddFilter(eFirstName, "Scott", efilEqual)
contsContactsFilter.AddFilter(eContactYears, "3", efilGT)

contsContacts.GetContacts()

If contsContacts.Count > 1 Then
 (whoops, got more than one member; handle it...)
Else
 contContact= CContacts.GetContact(1)
End If

contContact.GetAddresses()

For x = 1 to contContact.AddressCount
objAddress = contContact.GetAddress(x)
If objAddress.Purpose = “Temporary” Then
 objAddress.Delete()
End If
Next

addrAddress2 = contContact.NewAddress()
addrAddress2.Purpose = “VacationHome”
addrAddress2.Country = “Fiji”
addrAddress2....
CContact.SubmitChanges()

Code sample: Contacts - Update user-defined data

The code below demonstrates the following scenario:

Retrieve the user-defined data for a Contact and display the data from one of
the user-defined windows, modify a field value, and submit the change.

contContact.GetExtViews()

evwExtView = contContact.GetExtView(1)

strViewName = evwExtView.ViewName
(display ViewName...)

evwExtView.ExtGetFields() /* returns them in order by TabSeq (tab
order) */

For x = 1 to evwExtView.FieldsCount
efldField = evwExtView.ExtGetField(x)
strPrompt = efldField.Prompt
intFieldType = efldField.DataType
Select Case intFieldType
 Case iMISDataTypeChar
 intFieldWidth = efldField.FieldWidth
 Case iMISDataTypeInt
/* (Initialize as needed to prepare to display the field...) */
 Case iMISDataTypeMoney

 Case iMISDataTypeCheckBox

 Case iMISDataTypeDate

 etc...

iBO Programmer Guide...41

End Select
 (/* logic to display field prompt and value... */)
Next

/* (logic to retain/retrieve the field number corresponding to the
edited field...) */

efldField = evwExtView.GetField(x)
efldField.Value = /* (user input value) */
contContact.SubmitChanges()

/* process errErrors object... */

Code sample: Events - Display and register function data

The code below demonstrates the following scenario (assuming that the
customer ID has been retrieved into the variable 'strCustID'):

Display available events with their function definitions, and register the
customer's GUI selection of two functions.

dim cboEventsAdmin as iboEvents.CEventsBOAdmin
dim evtsEvents as iboEvents.CEvents
dim usrUser as iboUserSecurity.CUser

usrUser.DBID = “ODBC:imisdb”

Set cboEventsAdmin = new iboEvents.CEventsBOAdmin

' (Get events to choose from...)
Set evtsEvents = cboEventsAdmin.NewEvents(usrUser)
evtsEvents.GetEvents(True,True,True,100)
If evtsEvents.ErrorsCount > 0
' (handle errors by retrieving and parsing evtsEvents.Errors...)
End If

For x = 1 to evEvents.Count
 evtEvent = evEvents.GetEvent(x)
 strEventTitle = evtEvent.Title
 ' (display event title...)
 For y = 1 to evtEvent.FunctionsCount
 evtFunction = evtEvent.GetFunction(y)
 strDescription = evtFunction.Description
 ' etc... (display function information...)
 Next
Next

' (next page after event is chosen, and the EventCode is stored in
strEventCode, and the function codes are stored in strFunction1 and
strFunction2...)

Set regRegistration = cboEventsAdmin.NewRegistration(usrUser,
strEventCode, strRegistrantID,True,True,True,False)

regRegistration.NewLineItem(strFunctionCode1)
regRegistration.NewLineItem(strFunctionCode2)
If regRegistration.ErrorsCount > 0
' (handle errors by retrieving and parsing regRegistration.Errors...)
End If

regBadge = regRegistration.NewBadge()
regBadge.FirstName = “...”
regBadge.Designation = “...”
etc...
If regBadge.ErrorsCount > 0
 ' (handle errors by retrieving and parsing regBadge.Errors...)
End If

regPaymt = regRegistration.PaymentInfo

42.. iBO Programmer Guide

regPaymt.PayType = “CC”
regPaymt.CkOrCCNumber = “4111994822221111”
regPaymt.Amount = 495.00
regPaymt.CCExpire = “10/02”
regPaymt.CCType = “MC”
regPaymt.Validate
If regPaymt.ErrorCount > 0
' (handle errors by retrieving and parsing regPaymt.ErrorsObject...)
End If

regRegistration.SubmitChanges()
If regRegistration.ErrorCount > 0
' (handle errors by retrieving and parsing
regRegistration.ErrorsObject...)
End If

Code sample: Paging

This Visual Basic example will display all people with a last name in a given
state, 10 at a time, sorted by last name. The first portion initiates paging and the
second portion moves to the next page.

Option Explicit
Dim strPage As String
Dim Total As Integer
Dim curPage As Integer

Private Sub cmdFind_Select()
Dim I As Long
Dim CUser As iboUserSecurity.CUser
Dim cboa As iboContactManagement.CContactsBOAdmin
Dim contacts As iboContactManagement.CContacts
Dim contact As iboContactManagement.CContact

iBO Programmer Guide.. 43

Set CUser = New iboUserSecurity.CUser
CUser.DBID = "ODBC:Student02"
Set cboa = New iboContactManagement.CContactsBOAdmin
Set contacts = cboa.NewContacts(CUser)
contacts.ContactFilter.Operator = efilAnd
contacts.ContactFilter.AddFilter \
ZiboContactManagement_CContact.StateProvince, _ \
 txtState, efilEqual
contacts.ContactFilter.AddFilter
ZiboContactManagement_CContact.LastName, _ \
 "", efilNotEqual
'NOTE THE NEW WAY OF SORTING - WORKS WITH PAGING - 'START WITH zibo
'USED IN FILTER TO SORT ON
'THEN ADD EITHER edrqAscending OR edrqDescending
'SO ODD NUMBER PARAMETERS ARE zibo, EVEN NUMBER 'PARAMETERS
edrqAscending OR edrqDescending
'YOU CAN HAVE AS MANY PAIRS AS YOU WANT, BUT MUST BE 'PAIRS
Call
contacts.ContactFilter.SetOrderList(ZiboContactManagement_CContact.LastN
ame, edrqAscending)
If contacts.ErrorsCount Then
 MsgBox contacts.Errors.ErrorsToString
End If
'NOTE - YOU MUST PERFORM A GET CONTACTS IN ORDER TO GET HOW MANY 'PAGES
ARE REQUIRED
'A PRODUCT ENHANCEMENT HAS BEEN MADE FOR THIS
Call contacts.GetContacts(True, 0)
Total = contacts.Count / 10
curPage = 1
strPage = contacts.GetContactsPaged("", 10, 1)
For I = 1 To contacts.Count
 Set contact = contacts.GetContact(I)
 List1.AddItem (contact.ContactID & " " & \
 contact.MainAddress.StateProvince _ \
 & " " & contact.LastName)
Next

End Sub

44.. iBO Programmer Guide

Private Sub cmdPage_Select()
 Dim CUser As iboUserSecurity.CUser
 Dim cboa As iboContactManagement.CContactsBOAdmin
 Dim contacts As iboContactManagement.CContacts
 Dim contact As iboContactManagement.CContact

 Set CUser = New iboUserSecurity.CUser
 CUser.DBID = "ODBC:Student02"
 Set cboa = New iboContactManagement.CContactsBOAdmin
 Set contacts = cboa.NewContacts(CUser)
 'YES - YOU MUST REDO THE FILTER EACH TIME YOU GET SUBSEQUENT
 'PAGES. AFTER DISCUSSIONS WITH
 'DEVELOPERS, THEY COULDN'T CODE IT EASILY TO STORE THE FILTER,
 'SO YOU HAVE TO SPECIFY IT FOR
 'EACH SUBSEQUENT PAGE. THIS MAY BE RESOLVED IN THE FUTURE.
 'THEY KNOW ABOUT THIS ISSUE.
 contacts.ContactFilter.Operator = efilAnd
 contacts.ContactFilter.AddFilter \
 ZiboContactManagement_CContact.StateProvince, _ \
 txtState, efilEqual
 contacts.ContactFilter.AddFilter \
 ZiboContactManagement_CContact.LastName, _ \
 "", efilNotEqual
 Call \
 contacts.ContactFilter.SetOrderList(ZiboContactManagement_\
 CContact.LastName, edrqAscending)

 If curPage < Total Then
 curPage = curPage + 1
 Else
 curPage = 1
 List1.Clear 'only clearing list when going back to 1st
 'page, so you can see it working
 End If
 strPage = contacts.GetContactsPaged(strPage, 10, curPage)
 Dim I As Integer
 For I = 1 To contacts.Count
 Set contact = contacts.GetContact(I)
 List1.AddItem (contact.ContactID & " " & \
 contact.MainAddress.StateProvince _ \
 & " " & contact.LastName)
 Next
End Sub

Sample application
The following Active Server Pages implementation (using Javascript)
demonstrates how you could use the iBO interface to design a custom
registration web application.

Note: To be implemented, this code requires some minor changes to the
unencrypted e-Series source code. Contact ASI Consulting if you are interested
in attempting a similar ASP implementation.

Code sample: index.asp

<HTML>
<HEAD>
<TITLE></TITLE>
<link rel='stylesheet'
href='http://eseriesdev/eseriesIBO/scriptcontent/stylesheet.css'
type='text/css'>
</HEAD>
<BODY>

<%
var strActivetab;

http://eseriesdev/eseriesIBO/scriptcontent/stylesheet.css

iBO Programmer Guide.. 45

 /* Read in the querystring values... */
strActivetab = Request.QueryString("activetab");
strDSN = Request.QueryString("DSN");
strContactID = Request("ContactID");
strIP = Request("IP");
strEventCode = Request.QueryString("Event") ;
strFind = Request("Find");
strFilter = Request("Filter");

var strFilterTest = new String(Request("Filter"));

if (strFilterTest=="undefined"){
strFilter = 5;
}
%>

<table border="0" cellpadding="0" cellspacing="0" width="95%"><tr><td
align="left" style="padding: 0 0 0 0">

<!---tab table--->
<table border="0" cellpadding="3" cellspacing="0" class="tab-table">
 <tr>
<td align="middle" class=<% if (Request.QueryString("activetab")=="1"){
Response.Write("tab-active") }else{ Response.Write("tab-button")}%>><a
href="index.asp?DSN=<%=strDSN%>&IP=<%=strIP%>&ShowEvents=TRUE&ContactID=
<%=Request("ContactID")%>&activetab=1">Select Event</td>
<td align="middle" class=<% if (Request.QueryString("activetab")=="2"){
Response.Write("tab-active") }else{ Response.Write("tab-button")}%>><%
if (Request.QueryString("activetab")=="2" ||
Request.QueryString("activetab")=="3"){Response.Write("<a
href=index.asp?DSN="+strDSN+"&ShowFunctions=TRUE&IP=" + strIP +
"&ContactID="+Request("ContactID")+"&activetab=2&Event="+strEventCode+">
Event");} else {Response.Write("<span
class=EN10>Event");}%></td>
<td align="middle" class=<% if (Request.QueryString("activetab")=="3"){
Response.Write("tab-active") }else{ Response.Write("tab-
button")}%>>Event Detail</td>
<td align="middle" class=<% if (Request.QueryString("activetab")=="4"){
Response.Write("tab-active") }else{ Response.Write("tab-
button")}%>>Event Review</td>
 </tr></table>
<!---/tab table--->

</td></tr>
<tr><td align="left" style="padding: 0 0 0 0">

<!---tab body table--->
<table border="0" cellpadding="3" cellspacing="0" class="tab-table"
width="100%">
<form
action="index.asp?DSN=<%=strDSN%>&ShowEvents=TRUE&ContactID=<%=Request("
ContactID")%>&activetab=1" method=post>
<tr class="tab-button"><td colspan="4" align="right">Back to Main Site | <span
class=EN10>Find events that <select name="Filter"><option
value=5>Contain</option><option value=6>Begins With</option></select>
<input type="text" name="find" size="10" value="<%=(strFind)%>"> <input
type="submit" value="go"></td></tr>
 </form>
 <tr bgcolor="black" height="1"><td colspan="4"></td></tr>
 <tr><td colspan="4">
 <!------>

<TABLE cellSpacing=0 cellPadding=3 border=0 width=95% align="center">
 <TR>
<%
 var EvtAdminObject ;
 var EvtsObject ;

46.. iBO Programmer Guide

 var EvtObject ;
 var UserObject ;
 var lngCount ;
 var errObject ;
 var strLink1 ;
 var strLink ;

/* The following will be enumerated constants in the future... */
 var lngEvtPropMeeting = 2001001 ;
 var lngEvtPropTitle = 2001004 ;

 var intfilEqual = 1 ;
 var intfilNotEqual = 2 ;
 var intfilGT = 3 ;
 var intfilLT = 4 ;
 var intfilContains = 5 ;
 var intfilBeginsWith = 6 ;

/* Set up a User and Events admin object to instantiate IBO Events. */
 UserObject = Server.CreateObject("iboUserSecurity.CUser") ;
 UserObject.DBID = "ODBC:" + Request.QueryString("DSN") ;
EvtAdminObject = Server.CreateObject("iboEvents.CEventsBOAdmin") ;
 EvtsObject = EvtAdminObject.NewEvents(UserObject) ;

if(Request.QueryString("ShowEvents")=="TRUE")
/* Displaying the events list... */
 {
/* Filter, retrieve, and display events based on the supplied filter...
*/
Response.Write("<TR><TD COLSPAN=2>Select an event to
begin registration</td></tr>") ;

strLink1 = "<a href=http://srobinson-
w2k/eseriesIBO/ibo_demo/index.asp?activetab=2&DSN=" + strDSN + "&IP=" +
strIP + "&ContactID=" + strContactID + "&ShowFunctions=TRUE&Event=" ;

EvtsObject.EventFilter.AddFilter(eEvtTitle, strFind, strFilter) ;
/* params: true - clear collection first, false - don't retrieve
function data, false - don't retrieve function fee data, 100 maximum
records */
 EvtsObject.GetEvents(true,false,false,100) ;

 lngCount = 1 ;
Response.Write("<tr class=ETH><td></td><td colspan=2
height=1></td></tr>") ;
 while(lngCount <= EvtsObject.Count)
 /* The events are displayed such that they will link to the
ShowFunctions page (below) with the eventcode in the QueryString. */
EvtObject = EvtsObject.GetEvent(lngCount) ;
strLink = "<tr><td align=right valign=middle class=ETD width=150>" +
strLink1 + EvtObject.EventCode + ">" + EvtObject.Title + "</td><td
align=left valign=middle class=ETDALT width=425>" +
EvtObject.Description + "</td></tr>"
Response.Write(strLink) ;
Response.Write("<tr class=ETH><td></td><td colspan=2
height=1></td></tr>") ;
 lngCount += 1 ;
 }

Response.Write("") ;
}

if(Request.QueryString("ShowFunctions") == "TRUE")
/* Displaying the functions for a selected event... */
{

var strChkBox ;
var strDSN ;
var strEventCode ;

iBO Programmer Guide.. 47

strEventCode = Request.QueryString("Event") ;

strLink1 = " <a href=http://srobinson-
w2k/eseriesIBO/ibo_demo/index.asp?DSN=" + strDSN + "&IP=" + strIP +
"&Event=" + strEventCode + "&ContactID=" + strContactID +
"&FunctionDetail=TRUE&activetab=3&Function=" ;

EvtObject = EvtsObject.GetEventByCode(strEventCode) ;

/* Now display the functions on a submit form, each with a checkbox...
*/
Response.Write("<FORM ACTION=http://srobinson-
w2k/eseriesIBO/ibo_demo/RegistrationReview.asp?activetab=4&Event=" +
strEventCode + "&ContactID = " + strContactID + " METHOD=POST/>") ;

Response.Write("<TD>") ;
Response.Write("Event: " + EvtObject.Title +
"
") ;
Response.Write("Select register select one or more
functions") ;
Response.Write("</TD></TR>") ;

 lngCount = 1 ;

Response.Write("<INPUT TYPE=HIDDEN NAME=Event VALUE=" + strEventCode +
">") ;
Response.Write("<INPUT TYPE=HIDDEN NAME=ContactID VALUE=" + strContactID
+ ">") ;
Response.Write("<INPUT TYPE=HIDDEN NAME=DSN VALUE=" + strDSN + ">") ;
Response.Write("<INPUT TYPE=HIDDEN NAME=ACTIVETAB VALUE=4>") ;
Response.Write("<INPUT TYPE=HIDDEN NAME=IP VALUE=" + strIP + ">") ;
while(lngCount <= EvtObject.FunctionsCount)
 /* Each function will be displayed with the event and function code
in the querystring, linking to the Function Detail page (below)... */
 Response.Write("<TR><TD>") ;
 FunctionObject = EvtObject.GetFunction(lngCount) ;
strLink = strLink1 + FunctionObject.FunctionCode + ">" +
FunctionObject.FunctionTitle + ""
strChkBox = " <INPUT TYPE=CHECKBOX VALUE=ON NAME=" +
FunctionObject.FunctionCode + " style=border-width=0;>"
Response.Write(strChkBox + strLink) ;

 lngCount += 1 ;
 Response.Write("</TD></TR>") ;
}

 Response.Write("<TR><TD>") ;

Response.Write("Enter Registrant Class Code: <INPUT
TYPE=TEXT NAME=RegClass SIZE=8> ") ;
 Response.Write(" <INPUT TYPE=SUBMIT VALUE=Review> ") ;

 Response.Write("</TD>") ;
 }

if(Request.QueryString("FunctionDetail") == "TRUE")
/* Displaying the detail for a selected function... */
 {
 var EvtAdminObject ;
 var EvtsObject ;
 var EvtObject ;
 var UserObject ;
 var FunctionObject ;
 var errObject ;
 var strFunctionCode ;
 var strAutoEnroll ;

strEventCode = Request.QueryString("Event") ;

48.. iBO Programmer Guide

strFunctionCode = Request.QueryString("Function") ;

UserObject = Server.CreateObject("iboUserSecurity.CUser") ;
UserObject.DBID = "ODBC:" + Request.QueryString("DSN") ;
EvtAdminObject = Server.CreateObject("iboEvents.CEventsBOAdmin") ;
EvtsObject = EvtAdminObject.GetEventsObj(UserObject) ;

EvtObject = EvtsObject.GetEventByCode(strEventCode) ;
FunctionObject = EvtObject.GetFunctionByCode(strFunctionCode) ;

if(FunctionObject.AutoEnroll)
 strAutoEnroll = "YES" ;
 else
 strAutoEnroll = "NO" ;

 Response.Write("<TD>") ;
Response.Write("Event: " + EvtObject.Title +
"
") ;
Response.Write("Function: " +
FunctionObject.FunctionTitle + "") ;
Response.Write("
<P align=center><U>Function
Detail:</U>

") ;
 strPct = "%"
Response.Write("<TABLE align=center width=100"+strPct+">") ;

/* Function Detail : */
strHeaderBegin = "<TD align=right>" ;
strHeaderEnd = ": </TD>"
strValueBegin = "<TD align=left>"
strValueEnd = "</TD>"

Response.Write("<TR>") ;
Response.Write(strHeaderBegin + "Function Code" + strHeaderEnd) ;
Response.Write(strValueBegin + FunctionObject.FunctionCode +
strValueEnd) ;
Response.Write(strHeaderBegin + "Title" + strHeaderEnd) ;
Response.Write(strValueBegin + FunctionObject.FunctionTitle +
strValueEnd) ;
Response.Write("</TR>") ;
Response.Write("<TR>") ;
Response.Write(strHeaderBegin + "Begin Date" + strHeaderEnd) ;
Response.Write(strValueBegin + FunctionObject.BeginDate + strValueEnd) ;
Response.Write(strHeaderBegin + "End Date" + strHeaderEnd) ;
Response.Write(strValueBegin + FunctionObject.EndDate + strValueEnd) ;
Response.Write("</TR>") ;
Response.Write("<TR>") ;
Response.Write(strHeaderBegin + "Maximum Attendence" + strHeaderEnd) ;
Response.Write(strValueBegin + FunctionObject.MaxAttendees +
strValueEnd) ;
Response.Write(strHeaderBegin + "Auto-Enroll?" + strHeaderEnd) ;
Response.Write(strValueBegin + strAutoEnroll + strValueEnd) ;
Response.Write("</TR>") ;
 Response.Write("<TR>") ;
Response.Write(strHeaderBegin + "Status" + strHeaderEnd) ;
Response.Write(strValueBegin + FunctionObject.Status + strValueEnd) ;
Response.Write(strHeaderBegin + "Total Registered" + strHeaderEnd) ;
Response.Write(strValueBegin + FunctionObject.RegistrantsCount +
strValueEnd) ;
Response.Write("</TR>") ;
Response.Write("<TR>") ;
Response.Write(strHeaderBegin + "Type" + strHeaderEnd) ;
Response.Write(strValueBegin + FunctionObject.FunctionType +
strValueEnd) ;
Response.Write("</TR>") ;

 Response.Write("</TABLE>") ;

Response.Write("
<U>Registrant Fees for this
function:</U>

") ;

iBO Programmer Guide..49

Response.Write("<TABLE cellpadding=3 cellspacing=0 align=center
width=100"+strPct+">") ;

 lngCount = 1 ;

Response.Write("<TR><TD CLASS=ERSHeader align=center
valign=middle>Registrant Class</TD>") ;
Response.Write("<TD CLASS=ERSHeader align=center
valign=middle>Code</TD>") ;
Response.Write("<TD CLASS=ERSHeader align=center
valign=middle>Complementary?</TD>") ;
Response.Write("<TD CLASS=ERSHeader align=center valign=middle>Early
Fee</TD>") ;
Response.Write("<TD CLASS=ERSHeader align=center valign=middle>Regular
Fee</TD>") ;
Response.Write("<TD CLASS=ERSHeader align=center valign=middle>Late
Fee</TD></TR>") ;
while(lngCount <= FunctionObject.FunctionFeesCount)
 /* Function fee detail for each fee definition... */
ffeeFunctionFee = FunctionObject.GetFunctionFee(lngCount) ;
 strRegClass = ffeeFunctionFee.RegClassDescription ;
 strRegClassCode = ffeeFunctionFee.RegClass ;
 strFee1 = "$" + ffeeFunctionFee.EarlyFee ;
 strFee2 = "$" + ffeeFunctionFee.RegularFee ;
 strFee3 = "$" + ffeeFunctionFee.LateFee ;
 strIncomeAcct = ffeeFunctionFee.IncomeAccount ;
 if (ffeeFunctionFee.Complementary == true)
 strComplementary = "YES" ;
 else
 strComplementary = "NO" ;

Response.Write("<TR><TD><I>" + strRegClass +
"</I></TD>") ;
Response.Write("<TD>" + strRegClassCode +
"</TD>") ;
Response.Write("<TD align=center valign=middle>" +
strComplementary + "</TD>") ;
Response.Write("<TD>" + strFee1 + "</TD>") ;
Response.Write("<TD>" + strFee2 + "</TD>") ;
Response.Write("<TD>" + strFee3 + "</TD></TR>")
;

 lngCount += 1 ;
 }

Response.Write("</TABLE>") ;
}
%>
</TR></TABLE>
<!------>

</td></tr></table>
<!---/tab body table--->

</td></tr></table>

<table border="0" cellpadding="3" cellspacing="0" class="tab-table"
width="95%">
<tr bgcolor="black" height="1"><td colspan="3"></td></tr>
<tr class="tab-button"><td colspan="3" align="right">webmaster</td></tr>
<tr><td colspan="3"> </td></tr></table>

</HTML>

50.. iBO Programmer Guide

Code sample: RegistrationReview.asp

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE></TITLE>
<link rel='stylesheet'
href='http://eseriesdev/eseriesIBO/scriptcontent/stylesheet.css'
type='text/css'>
</HEAD>
<BODY>

<%
var strActivetab;
strActivetab = Request.QueryString("activetab");
strDSN = Request.QueryString("DSN");
strContactID = Request("ContactID");
strEventCode = Request.QueryString("Event") ;
strIP = Request("IP") ;

%>

<table border="0" cellpadding="0" cellspacing="0" width="95%"><tr><td
align="left" style="padding: 0 0 0 0">

<!---tab table--->
<table border="0" cellpadding="3" cellspacing="0" class="tab-table">
 <tr>
<td align="middle" class=<% if (Request.QueryString("activetab")=="1"){
Response.Write("tab-active") }else{ Response.Write("tab-button")}%>><a
href="index.asp?DSN=<%=strDSN%>&ShowEvents=TRUE&IP=<%=strIP%>&ContactID=
<%=Request("ContactID")%>&activetab=1">Select Event</td>
<td align="middle" class=<% if (Request.QueryString("activetab")=="2"){
Response.Write("tab-active") }else{ Response.Write("tab-button")}%>><%
if (Request.QueryString("activetab")=="2" ||
Request.QueryString("activetab")=="3" ||
Request.QueryString("activetab")=="4"){Response.Write("<a
href=index.asp?DSN="+strDSN+"&ShowFunctions=TRUE&IP=" + strIP +
"&ContactID="+Request("ContactID")+"&activetab=2&Event="+strEventCode+">
Event");} else {Response.Write("<span
class=EN10>Event");}%></td>
<td align="middle" class=<% if (Request.QueryString("activetab")=="3"){
Response.Write("tab-active") }else{ Response.Write("tab-
button")}%>>Event Detail</td>
<td align="middle" class=<% if (Request.QueryString("activetab")=="4"){
Response.Write("tab-active") }else{ Response.Write("tab-
button")}%>>Event Review</td>
 </tr></table>
<!---/tab table--->

</td></tr>
<tr><td align="left" style="padding: 0 0 0 0">

<!---tab body table--->
<table border="0" cellpadding="3" cellspacing="0" class="tab-table"
width="100%">
<form
action="index.asp?DSN=<%=strDSN%>&ShowEvents=TRUE&ContactID=<%=Request("
ContactID")%>&activetab=1" method=post id=form1 name=form1>
<tr class="tab-button"><td colspan="4" align="right">Back to Main Site | <span
class=EN10>Find events that <select name="Filter"><option
value=5>Contain</option><option value=6>Begins With</option></select>
<input type="text" name="find" size="10"> <input type="submit"
value="go" id=submit1 name=submit1></td></tr>
 <tr bgcolor="black" height="1"><td colspan="4"></td></tr>
 </form>
 <tr><td colspan="4" style="padding: 0 0 0 20">

http://eseriesdev/eseriesIBO/scriptcontent/stylesheet.css

iBO Programmer Guide...51

 <TABLE cellSpacing=0 cellPadding=3 border=0 width="45%">
 <TR>

 <!-- Body: -->
 <%

 var EvtAdminObject ;
 var EvtsObject ;
 var EvtObject ;
 var UserObject ;
 var lngCount ;
 var blnError ;
 var strLink1 ;
 var strLink ;
 var strChkBox ;
 var strDSN ;
 var strEventCode ;
 var strFunctionCode ;
 var strRegClass ;
 var funcFee ;
 var Registration ;
 var strContactID ;
 var blnInit ;
 var strConfirmed ;
 var lngItems ;

/* This page is either being posted to from the Functions selection
form, or it is being posted to from itself, after the user has reviewed
the registration and decides to submit it. First, it sets up a
registration object and populates it according to whatever was selected
on the Functions selection form (calling Registration.NewLineItem() for
each function). Then it either submits the registration if this page was
posted to after review, or it displays the registration information for
review (the form displays and the submit button posts back to this
page). */

 blnError = false ;

 UserObject = Server.CreateObject("iboUserSecurity.CUser") ;
 UserObject.DBID = "ODBC:" + Request("DSN") ;
EvtAdminObject = Server.CreateObject("iboEvents.CEventsBOAdmin") ;
 EvtsObject = EvtAdminObject.NewEvents(UserObject) ;
 strPct = "%"
Response.Write("<FORM ACTION=http://srobinson-
w2k/eseriesIBO/ibo_demo/RegistrationReview.asp? METHOD=POST id=form1
name=form1>") ;
 Response.Write("<TD" + ">") ;

 strEventCode = Request("Event") ;
 strRegClass = Request("RegClass") ;
 strContactID = Request("ContactID") ;
 strConfirmed = Request("Confirmed") ;

 EvtObject = EvtsObject.GetEventByCode(strEventCode) ;
Response.Write("
");

Response.Write("Event: " + EvtObject.Title + "")
;

Response.Write("<INPUT TYPE=HIDDEN NAME=Event VALUE=" + strEventCode +
">") ;
Response.Write("<INPUT TYPE=HIDDEN NAME=ContactID VALUE=" + strContactID
+ ">") ;
Response.Write("<INPUT TYPE=HIDDEN NAME=Confirmed VALUE=TRUE>") ;
Response.Write("<INPUT TYPE=HIDDEN NAME=DSN VALUE=" + strDSN + ">") ;
Response.Write("<INPUT TYPE=HIDDEN NAME=RegClass VALUE=" + strRegClass +
">") ;
Response.Write("<INPUT TYPE=HIDDEN NAME=IP VALUE=" + strIP + ">") ;

52.. iBO Programmer Guide

 lngCount = 1 ;
 lngItems = 0 ;
while(lngCount <= EvtObject.FunctionsCount && blnError == false)
 {
 FunctionObject = EvtObject.GetFunction(lngCount) ;

 blnInit = false ;
 strFunctionCode = FunctionObject.FunctionCode ;

 if (Request(strFunctionCode) == "ON")
 {
 if(lngItems == 0)
 {
/* Parameters for the following: UserObject contains database context,
EventCode and ContactID for the registration, false - don't auto-enroll
any automatic functions, false - don't attempt to auto-enroll any linked
functions, true - initialize the registration with default pricing, etc.
and true - this is an e-Series basket item. */
Registration =
EvtAdminObject.NewRegistration(UserObject,strEventCode,strContactID,fals
e,false,true,true) ;
 if(EvtAdminObject.ErrorsCount > 0)
Response.Write("

ERROR: " +
EvtAdminObject.Errors.GetErrorMessage() + "") ;
 blnError = true ;
 }
 else
 Registration.RegClass = strRegClass ;

 }
 if(blnError==false)
 { lngItems += 1 ;
Registration.NewLineItem(strFunctionCode,false) ;
/* false param: don't add linked functions */
Response.Write("<INPUT TYPE=HIDDEN NAME=" + strFunctionCode + "
VALUE=ON>") ;
 }
 }

 lngCount += 1 ;
 }

 if(strConfirmed == "TRUE" && blnError==false)
 {
 Registration.BatchNum = "93" ;
 Registration.IPAddress = strIP ;
 Registration.SubmitChanges() ;
 if(Registration.ErrorsCount==0)
 {
Response.Write("<P align=center>Registration was successfully
submitted.</p>") ;
Response.Write("<P align=center>Pr
oceed to Basket</p>")
 }
 else
Response.Write(Registration.Errors.GetErrorMessage()) ;
 }
 else if(blnError==false)
 {
Response.Write("
Please Review Your
Registration") ;
Response.Write("
<img scr=../images/1x1.gif width=1 height=10
border=0>
");
if(lngItems > 0)
{
Response.Write("<TABLE align=center cellpadding=3 cellspacing=0 border=0
width=95"+strPct+">") ;

http://eseriesdev/eseriesibo/source/Meetings/cBasketCheckOut.cfm>Pr

iBO Programmer Guide.. 53

Response.Write("<TR><TD class=ERSHeader align=center
valign=middle>Function</TD>") ;
Response.Write("<TD class=ERSHeader align=center
valign=middle>Price</TD></TR>") ;

 lngCount = 1 ;
 while(lngCount <= Registration.LineItemsCount)
 {
Response.Write("<TR><TD>" +
Registration.GetLineItem(lngCount).FunctionTitle + "</TD>") ;
Response.Write("<TD>$" +
Registration.GetLineItem(lngCount).ExtendedAmount + "</TD></TR>")
;
Response.Write("<TR><TD COLSPAN=2 HEIGHT=1 BGCOLOR=BLACK></TD></TR>");
 lngCount += 1 ;
 }
Response.Write("<TR><TD align=right><span
class=EN9>Total:</TD><TD>$" +
Registration.TotalCharges + "</TD></TR>") ;
Response.Write("</TABLE><TABLE align=center><TR><TD><INPUT TYPE=SUBMIT
VALUE=SAVE></TD></TR></TABLE>") ;
 }
 else
 Response.Write("<P align=center>(No Functions Selected)") ;
 }
 Response.Write("</TD>") ;

 %>

 </TR>
</TABLE>

</td></tr></table>
<!---/tab body table--->

</td></tr></table>
<table border="0" cellpadding="3" cellspacing="0" class="tab-table"
width="95%">
<tr bgcolor="black" height="1"><td colspan="3"></td></tr>
<tr class="tab-button"><td colspan="3" align="right">webmaster</td></tr>
<tr><td colspan="3"> </td></tr></table>

</BODY>
</HTML>

54.. iBO Programmer Guide

Glossary of Terms... 55

API

Application Program Interface. A language and message format used by an
application to communicate with, in this case, the database management system
behind iMIS. You implement APIs by writing function calls in the program,
which provide the linkage to the required subroutine for execution.

ASP

Active Server Pages, Microsoft's webserver technology. Not to be confused with
the other common meaning: Application Service Provider.

Business Object

A class providing a way to access to logical data within the iMIS database. A
Component supports one or more such classes.

Class

Programming unit of software within a component. Each class implements at
most one interface so that scripting languages can be supported.

ColdFusion

This is the webserver technology that e-Series uses to create dynamic web pages.
Allaire is the producer of this award winning software, which was acquired by
the software leader Macromedia in 2001.

COM Components

Microsoft's branding for files with a .DLL extension, as well as the Microsoft
technologies that support scalable server use of these files.

Component

Executable unit of software, deployed as a dynamically linked library (DLL). A
component supports one or more business object interfaces. One or more
classes implement each component.

Configure

Setting an e-Series option. For instance the Systems_Params group of options.
Also adjusting the cascading style sheet or e-Series module_config .txt files.
Configuration can also include editing HTML in the /ScriptContent group of
files.

Customize

This refers to making a change in e-Series that cannot currently be done by
configuring one of e-Series options. The only customizations that ASI
encourages are customizations developed using iBO. If iBO is used, then when
upgrading, the analysis, recoding, retesting and re-approval process is minimal,
allowing clients to upgrade with the same ease as with ASI's iMIS product.

DBID

Database Identifier, a property of the User object that provides the database
context for methods that you are calling.

Glossary of Terms

56.. iBO Programmer Guide

Dynamic Web Page

A web page whose contents vary depending upon parameters provided to the
webserver. The content that varies is read from a database based upon these
parameters. e-Series generates dynamic web pages.

Encrypted Files

The bulk of the e-Series scripts, which reside under the /Source folder. These
files are encrypted so that consultants cannot adjust these scripts. Adjusting
these scripts affects a clients upgrade path, as all customizations performed to
these scripts must be analyzed, and possibly recoded, tested and re-approved by
the client as part of the upgrade to a future release of e-Series.

iBO

iMIS Business Objects, the library of business logic that enables you to extend
iMIS with an interface and workflow of your own design.

iMIS

The iMIS application suite, including its SQL database.

Interface

Reference to an instance of a class within a component. A class is used to
implement an interface. Multiple classes can implement the same interface if
they are in different components. This is an example of polymorphism using
interfaces.

Module_Config

These unencrypted files hold the label settings used in e-Series.

ScriptContent

Refers to any of the ColdFusion files that reside in the /ScriptContent folder.
None of these files is encrypted, so consultants may configure any of these files.

Index ... 57

The page numbers in these index entries indicate the
page on which the relevant topic heading begins, not
the page on which the keyword appears.

.

.NET, unsupported formats • 25

A
access through layers • 6
accessing API Help • 19
ActiveX Controls • 25
Activity

CActivities • 12
CActivity • 12
CActivityBOAdmin • 12
interface for • 12

add joins, when to • 21
adding a join, example • 22
API (glossary) • 55
API documentation • 19
API Help, accessing • 19
application, sample • 44

index.asp • 44
RegistrationReview.asp • 50

ASP (glossary) • 55
ASP scripting. ColdFusion versus • 24
attributes

batch • 36

B
basket tables • 36
batch attributes • 36

DateCreated • 36
BOAdmin • 11
Business object

(glossary) • 55
inside a • 8

business objects • 6
data • 8
methods • 8
properties • 8
what are • 6

C
CActivities • 12
CActivity • 12
CActivityBOAdmin • 12
CAddress • 12
CBadge • 13
CBaseProduct • 14
CBatch • 13
CBatches • 13
CCashAccount • 15
CContact • 12
CContacts • 12
CContactsBOAdmin • 12
CContMgmtConfig • 12

CCountry • 15
CDuesProduct • 14
CDuesProducts • 14
CError • 13
CErrors • 13
Certification • 6
CESeries • 13
CESeriesIntegration • 13
CEvent • 13
CEvents • 13
CEventsBOAdmin • 13
CEventsConfig • 13
CExtField • 12
CExtView • 12
CFilter • 13
CFinancialEntities • 13
CFinancialEntity • 13
CFinancialProfile • 12
CFinancialsBOAdmin • 13
CFinancialsConfig • 13
CFRDataMgr • 14
CFunction • 13
CFunctionFee • 13
CGift • 14
change log, viewing in Customer Portfolio • 36
CKit • 14
CKitItem • 14
CKitItemOrderLine • 14
class (glossary) • 55
classes

iBO • 10
CMemberType • 15
CNote • 12
code, sample • 39
ColdFusion (glossary) • 55
ColdFusion sessions • 35
ColdFusion versus ASP scripting • 24
COM components • 6
COM components (glossary) • 55
component (glossary) • 55
components

COM • 6
iBO • 10

Concepts • 6
configure (glossary) • 55
constants for filters, enumerator • 22
Contacting ASI Developer Support • 6
contacts

CAcddress • 12
CContact • 12
CContacts • 12
CContactsBOAdmin • 12
CContMgmtConfig • 12
CExtField • 12
CExtView • 12
CFinancialProfile • 12
CNote • 12
interface for • 12

Contents • 23
conventions • 6

Index

58.. iBO Programmer Guide

conventions, naming • 11
COrder • 14
COrderLine • 14
COrders • 14
COrdersBOAdmin • 14
COrdersConfig • 14
CProductBOAdmin • 14
CProductCategories • 14
CProductCategory • 14
CPublicationInfo • 14
CRegistration • 13
CRegistrations • 13
CRegLineItem • 13
CStdOrder • 14
CStdOrderLine • 14
CStdOrders • 14
CStdProduct • 14
CStdProducts • 14
CSubscription • 15
CSubscriptionDef • 15
CSubscriptions • 15
CSubscriptionsBOAdmin • 15
CSubscriptionsConfig • 15
CSysCfgBOAdmin • 15
CSystemConfig • 15
CSystemParams • 15
CTaxAuthorities • 15
CTaxAuthority • 15
CUser • 15
customize (glossary) • 55

D
data • 8
DataServer

CFilter • 13
interface for • 13

DateCreated • 36
dates, international • 37
DBID (glossary) • 55
delete and insert data, example • 39
deliverables, development • 24
developer support • 6
development

deliverables • 24
environments • 24

display and register function data • 41
documentation

API • 19
conventions • 6

dynamic web page (glossary) • 55

E
encapsulation

schema • 6
encrypted files (glossary) • 56
enumerator constants for filters • 22

iboEnums_ColdFusion.cfm • 22
iboEnums_Javascript.asp • 22
iboEnums_VBScript.asp • 22

environments, development • 24
error handling

general procedure • 26
general procedure, ColdFusion • 26
general procedure, Visual Basic • 26
guide • 26

error messages • 29
Errors • 26

CError • 13
CErrors • 13
interface for • 13

errors, processing • 26
ErrorsCount • 26
e-Series

CESeries • 13
CESeriesIntegration • 13
interface for • 13

ESeriesIntegration • 34
events

CBadge • 13
CEvent • 13
CEvents • 13
CEventsBOAdmin • 13
CEventsConfig • 13
CFunction • 13
CFunctionFee • 13
CRegistration • 13
CRegistrations • 13
CRegLineItem • 13
interface for • 13

examples
adding a join • 22
delete and insert data • 39
display and register function data • 41
find and update data • 39
update user-defined data • 40

F
files • 16
filter example • 20
filters • 20

diagram • 20
enumerator constants • 22
example • 20
how filters work • 20
types of • 20

Financials
CBatch • 13
CBatches • 13
CFinancialEntities • 13
CFinancialEntity • 13
CFinancialsBOAdmin • 13
CFinancialsConfig • 13
interface for • 13

find and update data, example • 39
finding topics • 23
functionality overview • 10
fundraising

CFRDataMgr • 14
CGift • 14
interface for • 14

G
general errror handling procedure • 26

ColdFusion • 26
Visual Basic • 26

general model • 6
GetContact • 11
GetContactById • 11
GetContacts • 11
GetContactsPaged • 11
GetXML • 25
glossary • 55

Index ... 59

H
Help, accessing API • 19
how filters work • 20

I
iBO

(glossary) • 56
components and classes • 10
filters • 20
who should use • 10

iBO change log, viewing in Customer Portfolio • 36
iBO Files • 16
iboEnums_ColdFusion.cfm • 22
iboEnums_Javascript.asp • 22
iboEnums_VBScript.asp • 22
IBOGuest • 34
iboOrders • 38
iBO's role in iMIS • 10
iboUserSecurity.CUser • 11
iMIS • 10
iMIS (glossary) • 56
Index • 23
inside a Business Object • 8
Installation • 16
interface

(glossary) • 56
for Activity • 12
for Contacts • 12
for DataServer • 13
for Errors • 13
for e-Series • 13
for Events • 13
for Financials • 13
for FundRaising • 14
for Orders • 14
for Products • 14
for Subscriptions • 15
for SystemConfig • 15
for UserSecurity • 15

Interfaces • 6
international dates • 37
invoking server objects • 11

J
join, adding a join (example) • 22
joins • 21

L
layers

access through • 6
LoadXML • 25

M
managing the state of web sessions • 25
messages, error • 29
methods • 8
Module_Config (glossary) • 56

N
naming conventions • 11

plurals • 11

O
objects

invoking server • 11
understanding business • 6
what are business • 6

orders
CKitItemOrderLine • 14
COrder • 14
COrderLine • 14
COrders • 14
COrdersBOAdmin • 14
COrdersConfig • 14
CStdOrder • 14
CStdOrderLine • 14
CStdOrders • 14
interface for • 14

overview
functionality • 10

P
plurals • 11
printing topics • 24
processing errors • 26
Products

CBaseProduct • 14
CDuesProduct • 14
CDuesProducts • 14
CKit • 14
CKitItem • 14
CProductBOAdmin • 14
CProductCategories • 14
CProductCategory • 14
CPublicationInfo • 14
CStdProduct • 14
CStdProducts • 14
interface for • 14

properties • 8
prototyping in Visual Basic • 25
public classes

Activity • 12
Contacts • 12
DataServer • 13
Errors • 13
e-Series • 13
Events • 13
Financials • 13
FundRaising • 14
Orders • 14
Products • 14
Subscriptions • 15
SystemConfig • 15
UserSecurity • 15

Q
quantity shipped • 38

R
references • 29
release information • 5
requirements • 16

S
sample application • 44

index.asp • 44
RegistrationReview.asp • 50

sample scenarios and code • 39
scenarios, sample • 39
schema encapsulation • 6

60.. iBO Programmer Guide

script content (glossary) • 56
scriptin, ColdFusion versus ASP • 24
search • 23
server objects

invoking • 11
sessions

ColdFusion • 35
shipped quantity • 38
shipping

costs • 38
zones • 38

state of web sessions, managing the • 25
subscriptions

CSubscription • 15
CSubscriptions • 15
CSubscriptionsBOAdmin • 15
CSubscriptionsConfig • 15
interface for • 15

support • 6
system setup • 18
SystemConfig

CCashAccount • 15
CCountry • 15
CMemberType • 15
CSubscriptionDef • 15
CSysCfgBOAdmin • 15
CSystemConfig • 15
CSystemParams • 15
CTaxAuthorities • 15
CTaxAuthority • 15
interface for • 15

T
tables

basket • 36
topics

finding • 23
printing • 24

training • 6
types of filters • 20

U
Understanding Business Objects • 6
unsupported formats • 25
update user-defined data, example • 40
UserSecurity

CUser • 15
interface for • 15

V
viewing iBO change log in Customer Portfolio • 36
Visual Basic .NET • 25
Visual Basic, prototyping in • 25

W
web sessions, managing the state of • 25
what are business objects • 6
when to add joins • 21
who should use iBO • 10

X
Xtenders, unsupported formats • 25

	iBO Programmer Guide
	Before you begin
	iBO purpose and scope
	Getting support and certification
	Documentation conventions

	Concepts
	Understanding Business Objects
	iBO's role in iMIS
	iBO components and classes

	Development Guide
	Installing iBO
	API documentation
	Development environments and deliverables
	Managing the state of web sessions
	Error handling guide

	Integration Guide
	e-Series Integration
	Viewing the iBO Change Log in Customer Portfolio

	Usage Tips by Module
	General Issues
	iboCustomerManagement
	iboEvents
	iboOrders

	Code Samples
	Sample scenarios and code
	Sample application

	Glossary of Terms
	Index

